Hypergolix Python integration

documentation
Release 0.1.0

Muterra, Inc

May 19, 2017

Contents

Quickstart 3
L1 Linux & OSX . . . o e e 3
1.2 WIndows L e e 3
Features 5
2.1 Network-agnostiC o i e e e e e e e e e e e e e 5
2.2 Client-side encryption and authentication 5
2.3 Explicitdata expiration o oo e e e e e e e e e e e e 5
24 OPENSOUICE .« v v v v v v e e et e e e e e e e e e e e e e e 6
2.5 SimpletoIntegrate i i e 6
Installing and starting Hypergolix 7
3.1 Hypergolixinstallation e 7
3.2 Running Hypergolix e e e e e e e e 10
API reference 17
4.1 Hypergolix addresses: Ghid o oot ittt e e 17
4.2 Hypergolix IPC: the HGXLink o oot v ittt s e e e e e e e 20
43 Basicbytesinterface L e e e e e e e e e e 25
4.4 Serialized Python objects L 34
Example Hypergolix applications and tutorials 39
5.1 “Telemeter” remote monitoring example application 39

Hypergolix Python integration documentation, Release 0.1.0

Hypergolix is “programmable Dropbox”. Think of it like this:
1. run local applications
2. on different computers
3. using files and folders
4. synced across the internet
1. write local applications
2. on different computers
3. using programming objects
4. synced across the internet

Hypergolix runs as a local background service, just like Dropbox does. Once it’s running, instead of spending time
worrying about relative IP addresses, NAT traversal, pub/sub brokers, or mutual authentication, your code can just do
this:

>>> import hgx

>>> hgxlink hgx.HGXLink ()

>>> alice = hgxlink.whoami

>>> bob = hgx.Ghid.from_str ('AR 2cdgljlHpagGa7/K8CmvSksaKMIi_scApddEgHT8dZy__
—VW3YgoUV5T41iVv1zE2V8gsjel9K33KZhyI2i0FwAk=")

>>> obj = hgxlink.new_threadsafe (cls=hgx.JsonProxy, state='Hello world!")
>>> obj.share_threadsafe (bob)

and Hypergolix takes care of the rest. Alice can modify her object locally, and so long as she and Bob share a common
network link (internet, LAN...), Bob will automatically receive an update from upstream.

Hypergolix is marketed towards Internet of Things development, but it’s perfectly suitable for other applications as
well. For example, the first not-completely-toy Hypergolix demo app is a remote monitoring app for home servers.

Contents 1

https://github.com/Muterra/py_hypergolix_demos/tree/master/telemeter

Hypergolix Python integration documentation, Release 0.1.0

2 Contents

CHAPTER 1

Quickstart

This install, configure, and start Hypergolix. You must have already satisfied all install requirements. See Hypergolix
installation for a thorough install guide, and Running Hypergolix for a thorough configuration and startup guide.

Note: There are two parts to Hypergolix: the Hypergolix daemon, and the Hypergolix integration. The daemon is
installed only once per system, but the integration must be installed in every Python environment that wants to use
Hypergolix.

Linux & OSX

Installing Hypergolix:

sudo apt-get install python3-venv

sudo mkdir /usr/local/hypergolix

sudo python3 -m venv /usr/local/hypergolix/hgx—-env

sudo /usr/local/hypergolix/hgx—-env/bin/python -m pip install --upgrade pip

sudo /usr/local/hypergolix/hgx—env/bin/pip install hypergolix

sudo 1ln -s /usr/local/hypergolix/hgx-env/bin/hypergolix /usr/local/bin/hypergolix
hypergolix config —--add hgx

hypergolix start app

Integration:

’your/env/here/bin/pip install hgx

Windows

Installing Hypergolix:

Hypergolix Python integration documentation, Release 0.1.0

mkdir "$PROGRAMFILES%/Hypergolix"

python -m venv "$PROGRAMFILES%/Hypergolix/hgx—env"
"$PROGRAMFILESS%/Hypergolix/hgx—-env/Scripts/python"” -m pip install --upgrade pip
"$PROGRAMFILESS/Hypergolix/hgx—-env/Scripts/pip" install hypergolix
"SPROGRAMFILESS/Hypergolix/hgx—env/Scripts/python" -m hypergolix.winpath *
—%PROGRAMFILES"%/Hypergolix/hgx—env/Scripts

set PATH=%PATH%; $PROGRAMFILES%/Hypergolix/hgx—-env/Scripts

hypergolix config --add hgx

hypergolix start app

Integration:

your/env/here/Scripts/pip install hgx

4 Chapter 1. Quickstart

CHAPTER 2

Features

Network-agnostic

Both Hypergolix objects and users are hash-addressed. Hypergolix applications don’t need to worry about the network
topology between endpoints; Hypergolix is offline-first and can failover to local storage and/or LAN servers when
internet connectivity is disrupted. This happens completely transparently to both the application and the end user.

Client-side encryption and authentication

All non-local operations are enforced by cryptograpy. Specifically, Hypergolix is backed by the Golix protocol, with
the current implementation supporting SHA-512, AES-256, RSA-4096, and X25519, with RSA deprecation planned
by early 2018.

Except in local memory, Hypergolix objects are always encrypted (including on-disk). Authentication is verified
redundantly (by both client and server), as is integrity. Both checks can be performed offline.

Accounts are self-hosting: all user data is extracted from a special Hypergolix bootstrap object encrypted with the
user’s scrypted password.

Explicit data expiration

Hypergolix data is explicitly removed, and removal propagates to upstream servers automatically. Hypergolix lifetimes
are directly analogous to object persistence in a reference-counting memory-managed programming language: each
object (Hypergolix container) is referenced by a name (a Hypergolix address), and when all its referents pass out of
scope (are explicitly dereferenced), the object itself is garbage collected.

https://github.com/Muterra/doc-golix

Hypergolix Python integration documentation, Release 0.1.0

Open source

Hypergolix is completely open-source. Running your own local server is easy: just run the command hypergolix

start server. Here are some source code links:
* Hypergolix source (~36k LoC)
* Hypergolix event loop management (~4k LoC)
» Hypergolix daemonization (~7k LoC)

¢ Golix implementation (~5k LoC)

Simple to integrate

Hypergolix supports all major desktop platforms (OSX, Windows, Linux; mobile support is planned in the future).
Applications interact with Hypergolix through inter-process communication, using Websockets over localhost.
Hypergolix ships with Python bindings to the API (broader language support is a very high priority) for easy integra-

tion:

>>> # This connects to Hypergolix
>>> import hgx
>>> hgxlink = hgx.HGXLink ()

>>> # This creates a new object

>>> obj = hgxlink.new_threadsafe (
cls = hgx.JsonProxy,
state = 'Hello World!"',

>>> # This updates the object

>>> obj += ' Welcome to Hypergolix.'
>>> obj.hgx_push_threadsafe ()
>>> 0obj

<JsonProxy to 'Hello World! Welcome to Hypergolix!' at Ghid('WEFUmW...

>>> # This is the object's address, which we need to retrieve it
>>> obj.hgx_ghid.as_str()

' AWFUMWQJvo3U81-hH3WgtXa9bhB9dyXf1QTOyB_13b6XwjB-WgeN-
—Lz7JzkMckhDRcJCFS1EmxrcQlOE2f0Jxh4="

>>> # This retrieves the object later

>>> address = hgx.Ghid.from_str(

R 'AWFUmMWQJvo3U81-hH3WgtXa9bhB9dyXf1QTOyB_13b6XwjB-WgeN—
—Lz7JzkMckhDRcJCFS1EmMxrcQlOE2f0Jxh4=")

>>> obj = hgxlink.get_threadsafe (cls=hgx.JsonProxy, ghid=address)
>>> 0obj

<JsonProxy to 'Hello World! Welcome to Hypergolix!' at Ghid ('WFUmW. ..

Chapter 2. Features

https://github.com/Muterra/py_hypergolix
https://github.com/Muterra/py_loopa
https://github.com/Muterra/py_daemoniker
https://github.com/Muterra/py_golix

CHAPTER 3

Installing and starting Hypergolix

Hypergolix installation

Hypergolix has two parts:
1. the Hypergolix daemon (pip install hypergolix)
2. the Hypergolix integration (pip install hgx)

To avoid namespace conflicts in dependencies, the daemon should be run in its own dedicated Python environment.
One dependency in particular (pycryptodome, used for password scrypting) is known to cause issues with shared
environments, especially Anaconda. If using Anaconda, be sure to pip install hypergolix within a new,
bare environment.

hgx, on the other hand, is a pure Python package, including its dependencies. As such, it is much easier to install,
and you should almost always use hgx in your actual application.

Linux

Additional installation requirements

Hypergolix (via its https://cryptography.io dependency) requires OpenSSL 1.0.2. On Linux, we test against versions
1.0.2j and 1.1.0c. Most recent mainstream Linux distros should ship with a sufficient OpenSSL version, in which case
this should be adequate install preparation:

sudo apt-get install build-essential libssl-dev libffi-dev python3-dev

However, if you get any crypto-related errors, it’s likely you need to re-link OpenSSL for cryptography, as de-
scribed here.

For reference, this is our install script for automated testing, which does require some version muckery:

https://cryptography.io
https://cryptography.io/en/latest/installation/#using-your-own-openssl-on-linux

Hypergolix Python integration documentation, Release 0.1.0

if [-n "S{OPENSSL}"]; then
OPENSSL_DIR="0ssl-1/S{OPENSSL}"
if [[! —-f "SHOME/SOPENSSL_DIR/bin/openssl"]]; then

curl -O https://www.openssl.org/source/openssl-SOPENSSL.tar.gz

tar zxf openssl-SOPENSSL.tar.gz

cd openssl-SOPENSSL

./config shared no-asm no-ssl2 no-ssl3 —-fPIC —--prefix="SHOME/SOPENSSL_DIR"

modify the shlib version to a unique one to make sure the dynamic

linker doesn't load the system one. This isn't required for 1.1.0 at the

moment since our Travis builders have a diff shlib version, but it doesn't,
—hurt

sed -1 "s/~SHLIB_MAJOR=.x/SHLIB_MAJOR=100/" Makefile

sed -i "s/”"SHLIB_MINOR=.x*/SHLIB_MINOR=0.0/" Makefile

sed —-i "s/"SHLIB_VERSION_NUMBER=.x/SHLIB_VERSION_NUMBER=100.0.0/" Makefile

make depend

make install

Add new openssl to path
export PATH="SHOME/S$SOPENSSL_DIR/bin:$SPATH"
export CFLAGS="-ISHOME/S$SOPENSSIL_DIR/include"
rpath on linux will cause it to use an absolute path so we don't need to do
LD LIBRARY PATH
export LDFLAGS="-L$SHOME/SOPENSSL_DIR/lib -Wl,-rpath=$HOME/S$SOPENSSL_DIR/1ib"
fi

cd $TRAVIS_BUILD_DIR
fi

Recommended installation procedure

This will install Hypergolix into a dedicated Python virtual environment within /usr/local/hypergolix, and
then add the hypergolix command as a symlink in /usr/local/bin. Afterwards, Hypergolix should be available
directly through the command line by simply typing (for example) hypergolix start app.

sudo apt-get install python3-venv

sudo mkdir /usr/local/hypergolix

sudo python3 -m venv /usr/local/hypergolix/hgx-env

sudo /usr/local/hypergolix/hgx—env/bin/python -m pip install --upgrade pip

sudo /usr/local/hypergolix/hgx—env/bin/pip install hypergolix

sudo 1n -s /usr/local/hypergolix/hgx-env/bin/hypergolix /usr/local/bin/hypergolix

Recommended integration procedure

path/to/your/app/env/bin/pip install hgx

#!/path/to/your/app/env/bin/python
import hgx

OSsX

8 Chapter 3. Installing and starting Hypergolix

Hypergolix Python integration documentation, Release 0.1.0

Additional installation requirements

Cryptography ships with compiled binary wheels on OSX, so installation should not require any prerequisites,
though it may be necessary to update Python. Additionally, one dependency (donna25519) requires the ability to
compile C extensions.

Recommended installation procedure

This will install Hypergolix into a dedicated Python virtual environment within /usr/local/hypergolix, and
then add the hypergolix command as a symlink in /usr/local/bin. Afterwards, Hypergolix should be available
directly through the command line by simply typing (for example) hypergolix start app.

sudo apt-get install python3-venv

sudo mkdir /usr/local/hypergolix

sudo python3 -m venv /usr/local/hypergolix/hgx—env

sudo /usr/local/hypergolix/hgx—env/bin/python -m pip install —--upgrade pip

sudo /usr/local/hypergolix/hgx—env/bin/pip install hypergolix

sudo 1n -s /usr/local/hypergolix/hgx-env/bin/hypergolix /usr/local/bin/hypergolix

Recommended integration procedure

path/to/your/app/env/bin/pip install hgx

#!/path/to/your/app/env/bin/python
import hgx

Windows

Additional installation requirements

The only Windows prerequisite is Python itself. Because of the namespace conflicts mentioned above, we recommend
running Hypergolix in a dedicated virtualenv created through stock Python.

Python is available at Python.org; be sure to download Python 3 (not 2.7.xx).

Recommended installation procedure

This will install Hypergolix within your program files. It will then add the Hypergolix bin folder to the end of your
PATH (meaning everything else will take precedence over it). You will need to run these commands from within an
elevated (Administrator) command prompt.

mkdir "$PROGRAMFILES%/Hypergolix"

python -m venv "$PROGRAMFILES%/Hypergolix/hgx—env"
"$PROGRAMFILESS%/Hypergolix/hgx-env/Scripts/python"™ -m pip install --upgrade pip
"$PROGRAMFILESS%/Hypergolix/hgx—-env/Scripts/pip" install hypergolix
"SPROGRAMFILESS%/Hypergolix/hgx—env/Scripts/python" -m hypergolix.winpath *
—%PROGRAMFILES"%/Hypergolix/hgx—env/Scripts

set PATH=%PATH%; $PROGRAMFILESS%/Hypergolix/hgx-env/Scripts

3.1. Hypergolix installation 9

https://www.python.org/downloads/

Hypergolix Python integration documentation, Release 0.1.0

Warning: Windows command prompts do not register updates to environment variables after they’ve been
started (they do not handle WS_SettingChange messages). As such, set PATH=%PATHS$; $PROGRAMFILESS/
Hypergolix/hgx—-env/Scripts needs to be called in any prompt that was open before Hypergolix installa-
tion. Prompts opened afterwards will automatically load the correct $PATHS.

Recommended integration procedure

path/to/your/app/env/Scripts/pip install hgx

#!/path/to/your/app/env/Scripts/python
import hgx

Building from source

Hypergolix itself is pure Python, so this is easy. Make sure you satisfy the installation requirements listed above, and
then clone the source and install it:

git clone https://github.com/Muterra/py_hypergolix.git ./hgx-src
/path/to/dest/env/bin/pip install -e ./hgx-src

Running Hypergolix

Before running Hypergolix, make sure you have installed it, as described in Hypergolix installation.

Configuring Hypergolix
The Hypergolix daemon uses a simple YAML file to store its persistent configuration. This configuration is preferably
stored in a subdirectory of your user folder, ie:

e C:\Users\<username>\.hypergolix\ for Windows systems

e ~/.hypergolix/ for Unix systems

However, Hypergolix can look for the configuration file in other locations as well. Specifically, it searches these
locations for hypergolix.yml:

1. at the path specified in the environment variable HYPERGOLIX_HOME

2. the current directory

3. ~/.hypergolix (Unix) or $HOMEPATHS\ . hypergolix (Windows)

4. /etc/hypergolix (Unix) or $LOCALAPPDATA%\Hypergolix (Windows)

All configuration of Hypergolix is done through this file. When you first run Hypergolix, it will automatically create
the following default configuration:

* No remotes (local-only storage)
¢ Info-level logging
* IPC port 7772

10 Chapter 3. Installing and starting Hypergolix

Hypergolix Python integration documentation, Release 0.1.0

Note: You must restart Hypergolix for any configuration changes to take effect.

Warning: The config file also stores the user idand fingerprint for the current Hypergolix user. Unless
you record your user id somewhere else (for example, in a password manager), if you lose this file, you will
probably lose access to your Hypergolix account.

You can also see these values by running the command hypergolix config —--whoami.

Miscellaneous commands:

hypergolix config [-h]

[-—whoami]

[-—register]
-h, --help Shows the help message and exits
--whoami Print the fingerprint and user ID for the current Hypergolix configuration.
--register Register the current Hypergolix user, allowing them access to the

hgx.hypergolix.com remote persister. Requires a web browser.

An example hypergolix.yml file:

process:
ghidcache: C:\Users\WinUser\.hypergolix\ghidcache
logdir: C:\Users\WinUser\.hypergolix\logs
pid_file: C:\Users\WinUser\.hypergolix\hypergolix.pid
ipc_port: 7772
instrumentation:
verbosity: debug
debug: true
traceur: false
user:
fingerprint: AbYly3O0IxHORtS5knuFOc7rHSj8-
—x4cihF3Lbf6tabx6WFRUAGV0gGe89d00pk 9ZNOEeDs5XYshcGEv3Z___vxkco=
user_id: AcTsUOCtK-7iuyLtTnlwL6fgZ7iiw5v2hHmGpHWNnoHS5pJzECihIDtXn_
—AogqgrCnYTuOmx4RAAg9ymbzkFPy52B0O=
root_secret: null

remotes:
- host: hgx.hypergolix.com
port: 443

tls: true
- host: 123.123.123.123

port: 7770
tls: false
server:

ghidcache: C:\Users\WinUser\.hypergolix\ghidcache
logdir: C:\Users\WinUser\.hypergolix\logs

pid_file: C:\Users\WinUser\.hypergolix\hgx-server.pid
host: AUTO

port: 7770

verbosity: debug

debug: true

3.2. Running Hypergolix 11

Hypergolix Python integration documentation, Release 0.1.0

Process configuration:
The Hypergolix process can be customized with specific disk locations. You may also change the localhost port used
for inter-process communication with app integrations.

The ghidcache directory is used to store the individual Hypergolix objects. It may be the same as the server
ghidcache.

Warning: Though the Hypergolix app and server may share a ghidcache directory, running them from the
same directory at the same time is currently unsupported, and will thoroughly break Hypergolix.

The logdir directory stores a rotating collection of Hypergolix logs. A new log sequence is created every time
Hypergolix starts. It may be necessary to periodically empty this directory.

The pid_file is used to store the Hypergolix process ID, and to prevent multiple instances of the same Hypergolix
process from starting.

The ipc_port setting controls which localhost port is used by Hypergolix IPC. It defaults to 7772.

Warning: Changing the IPC port from the default will require you to always supply the correct ipc_port to
the HGXLink.

process:
ghidcache: C:\Users\WinUser\.hypergolix\ghidcache
logdir: C:\Users\WinUser\.hypergolix\logs
pid_file: C:\Users\WinUser\.hypergolix\hypergolix.pid
ipc_port: 7772

Instrumentation configuration:
Hypergolix has various instrumentation capabilities to aid in diagnosing problems. All logs are stored locally, in the
directory specified in 1logdir above.
Verbosity can be configured between the following values, from quietest to loudest:
1. error logs only errors
2. warning logs errors and warnings
3. info logs errors, warnings, and informational messages
4. debug logs all of the above, plus hypergolix debug messages
5. shouty logs all of the above, plus websocket s debug messages
6. extreme logs all of the above, plus asyncio debug messages

Hypergolix can be run in debug mode, which will degrade local performance slightly, but without it, logged
exception tracebacks will be incomplete.

The traceur key is currently unused.

12 Chapter 3. Installing and starting Hypergolix

Hypergolix Python integration documentation, Release 0.1.0

instrumentation:
verbosity: debug
debug: true
traceur: false

User configuration:

The user configuration block sets up the Hypergolix user.

Danger: Tampering with this block can render your Hypergolix account unusable!

The fingerprint field is your Ghid fingerprint. Other Hypergolix accounts can use it to share things with you.

The user_id field is a Ghid reference to the object containing your account information, including your private
keys. Without it, you cannot access your account.

The root_secret field can be used for password-less authentication. We strongly recommend against using this
field until the login mechanism has been hardened, and even then, it should only be used for semi- or fully-autonomous
systems that must survive a system reboot without remote interaction.

user:
fingerprint: AbY1ly30IxHORt5knuFOc7rHSj8-
—x4cihF3Lbf6tabx6WFRUAGV0gGe89d00pk9ZNOEeDs5XYsheGEv3Z__ vxkco=
user_id: AcTsUOCtK-7iuyLtTnlwlL6fgZ7iiw5v2hHmGpHWnoHS5pJzECihIDtXn_
—AogqgrCnYTuOmx4RAAGOymbzkFPy5zBQ=
root_secret: null

Remote configuration:
Remote persistence servers store Hypergolix data nonlocally. For two Hypergolix accounts to be able to communicate,
they must always have at least one persistence server in common.

You can use any combination of remotes you’d like. To use only local storage (ie, to use no remotes), set the key to an
empty list:

remotes: []

Otherwise, each remote should be configured as a combination of a host, a port, and a boolean indicator for whether
or not the remote server uses TLS:

remotes:
- host: hgx.hypergolix.com
port: 443

tls: true

Server configuration:
The server block allows you to run a remote persistence server on your own machine. It must be started separately
(and in addition to) the Hypergolix app.

The ghidcache directory is used to store the individual Hypergolix objects. It may be the same as the app
ghidcache.

3.2. Running Hypergolix 13

Hypergolix Python integration documentation, Release 0.1.0

Warning: Though the Hypergolix app and server may share a ghidcache directory, running them from the
same directory at the same time is currently unsupported, and will thoroughly break Hypergolix.

The logdir directory stores a rotating collection of Hypergolix logs. A new log sequence is created every time
Hypergolix starts. It may be necessary to periodically empty this directory.

The pid_file is used to store the Hypergolix process ID, and to prevent multiple instances of the same Hypergolix
process from starting.

The host field determines which hostname the remote server will bind to. By default (including when defined as
null, it will bind only to localhost. If set to AUTO, Hypergolix will automatically determine the machine’s
current IP address, and bind to that. If set to ANY, it will bind to any hosts at that port.

The port field determines which port the remote server will bind to. It defaults to 7770.
1. error logs only errors
2. warning logs errors and warnings
3. info logs errors, warnings, and informational messages
4. debug logs all of the above, plus hypergolix debug messages
5. shouty logs all of the above, plus websocket s debug messages
6. extreme logs all of the above, plus asyncio debug messages

Hypergolix can be run in debug mode, which will degrade local performance slightly, but without it, logged
exception tracebacks will be incomplete.

server:
ghidcache: C:\Users\WinUser\.hypergolix\ghidcache
logdir: C:\Users\WinUser\.hypergolix\logs
pid_file: C:\Users\WinUser\.hypergolix\hgx-server.pid
host: AUTO
port: 7770
verbosity: debug
debug: true

Running Hypergolix

Once installed and configured, Hypergolix is easy to use:

Start the app daemon like this
hypergolix start app

Once started, stop the app daemon like this
hypergolix stop app

When you run the Hypergolix app for the first time, it will walk you through the account creation process. After that,
Hypergolix will automatically load the existing account, prompting you only for your Hypergolix password.

Warning: If you want Hypergolix to connect with other computers, you must configure remote(s). See above.

14 Chapter 3. Installing and starting Hypergolix

Hypergolix Python integration documentation, Release 0.1.0

Note: Hypergolix is always free to use locally, but on the hgx.hypergolix.com remote persistence server,
accounts are limited to read-only access (10MB up, unlimited down) until they register. Registration currently costs
$10/month.

The Hypergolix server is similarly easy to start. If you want the application daemon to be able to connect to your
server on startup, you should start the server first.

Start the server daemon like this
hypergolix start server

Once started, stop the server daemon like this
hypergolix stop server

Note: If you are running a Hypergolix server locally, please enable logging, with a verbosity of debug, and consider
enabling debug mode. This will help the Hypergolix development team troubleshoot any problems that arise during
operation.

Using Hypergolix within your application

As mentioned in Hypergolix installation, applications should integrate Hypergolix using the hgx package on pip:

path/to/your/app/env/bin/pip install hgx

From here, develop your application as you normally would, importing hgx and starting the HGXL1ink:

#!/path/to/your/app/env/bin/python
import hgx
hgxlink = hgx.HGXLink ()

3.2. Running Hypergolix 15

Hypergolix Python integration documentation, Release 0.1.0

16 Chapter 3. Installing and starting Hypergolix

CHAPTER 4

API reference

Hypergolix addresses: Ghid

class Ghid (algo, address)
New in version 0.1.

The “Golix hash identifier”: a unique content address for all Golix and Hypergolix content, as defined in the
Golix spec. For identities, this is approximately equivalent to their public key fingerprint; for static objects, this
is the hash digest of their content; for dynamic objects, this is the hash digest of their dynamic pointers (in Golix
terminology, their “bindings”).

Note: Ghid instances are hashable and may be used as keys in collections.

Parameters

* algo (int) — The Golix-specific integer identifier for the hash algorithm. Currently, only
1 is supported.

* address (bytes) — The hash digest of the Ghid.
Raises
e ValueError — for invalid algo s.

* ValueError — when the length of address does not match the expected length for the
passed algo.

Warning: Once created, changing a Ghid‘s algo and address attributes will break hashing. Avoid
doing so. In the future, these attributes will be read-only.

17

Hypergolix Python integration documentation, Release 0.1.0

>>> from hypergolix import Ghid
>>> ghid = Ghid(1, bytes(64))
>>> ghid

Ghid(algo=1, address=b
—"\x00\

)

algo
The Golix-specific int identifier for the hash algorithm.

address
The hash digest of the Ghid, in bytes.

Return type bytes

__eq__ (other)
Compares with another Gh1d instance.

Parameters other (Ghid)— The Ghid instance to compare with.
Return type bool
Raises TypeError — when attempting to compare with a non-Ghid-like object.

__str_ ()
Returns a string representation of the Ghid object, including its class, using a truncated url-safe base64-
encoded version of its bytes serialization.

Return type str

>>> ghid

Ghid (algo=1, address=b
—"\x00\
—")

>>> str(ghid)
Ghid ("AQAAA...")

__bytes__ ()
Serializes the Ghid into a Golix-compliant bytestring.

Return type bytes

>>> ghid

Ghid(algo=1, address=b
< "\x00\
")

>>> bytes (ghid)
b
—"\x01\x00\

'
—

classmethod from_bytes (data)
Loads a Ghid from a Golix-compliant bytestring.

Parameters data (bytes)— The serialization to load

Return type Ghid

>>> ghid
Ghid (algo=1, address=b
—'"\x00\

")

18 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

>>> bytes (ghid)
b
—'"\x01\x00\

'
—

>>> ghid2 = Ghid.from_bytes (b
—'"\x01\x00\
")
>>> ghid2 == ghid
True

as_str()
Returns the raw url-safe base64-encoded version of the Ghid‘s serialization, without a class identifier.

Return type str

>>> ghid

Ghid (algo=1, address=b
—'"\x00\
o)

>>> ghid.as_str()

— "AQAAANAAAAAAAAAAA=

'
—

classmethod from_str (b64)
Loads a Ghid from a url-safe base64-encoded Golix-compliant bytestring.

Parameters b64 (st r)— The serialization to load

Return type Ghid

>>> ghid

Ghid (algo=1, address=b
—"\x00\
")

>>> ghid.as_str()

— 'AQAAALAA=
ot

>>> ghid3 = Ghid.from_str(
— "AQAAANAAAAAAAAAAA=
")

>>> ghid3 == ghid
True

classmethod pseudorandom (algo)
Creates a pseudorandom Ghid for the passed int algorithm identifier.

Parameters bé64 (st r)— The serialization to load

Return type Ghid

Warning: This is not suitable for cryptographic purposes. It is primarily useful during testing.

>>> ghid
Ghid(algo=1, address=b
—'"\x00\

o)

4.1.

Hypergolix addresses: Ghid 19

Hypergolix Python integration documentation, Release 0.1.0

>>> ghid.as_stzr ()

— "AQAAANAAAAAAAAAAA=

'
—

>>> ghid3 = Ghid.from_str(
— "AQAAANAAAAAAAAARAA=
—")
>>> ghid3 == ghid
True

Hypergolix IPC: the HGXLink

class HGXLink (ipc_port=7772, autostart=True, *args, threaded=True, **kwargs)
New in version 0.1.

The inter-process communications link to the Hypergolix service. Uses Websockets over localhost, by default
on port 7772. Runs in a dedicated event loop, typically within a separate thread. Must be explicitly stopped
during cleanup.

Parameters
* ipc_port (int) — The localhost port where the Hypergolix service is currently running.

* autostart (bool)— Automatically connect to Hypergolix and start the HGXLink during
__init__.IfFalse, the HGXLink must be explicitly started with start ().

* xargs — Passed to loopa.TaskCommander.

* threaded (bool)—If True, run the HGXLink in a separate thread; if False, run it in
the current thread. In non-threaded mode, the HGXLink will block all operations.

* xxkwargs — Passed to 1loopa.TaskCommander.

Returns The HGXLink instance.

>>> import hgx
>>> hgxlink = hgx.HGXLink ()

whoami
The Ghid representing the public key fingerprint of the currently-logged-in Hypergolix user. This address
may be used for sharing objects. This attribute is read-only.

Return Ghid if successful

Raises RuntimeError — if the Hypergolix service is unavailable.

>>> hgxlink.whoami

Ghid (algo=1, address=b'\xf8A\xd6 \xll\xedN\xl4\xab\xe5
—"\x16\x0fs\n\x02\x08\xal\xca\xab\xcb6
—S\xa7D\xf7\xb9%\xa2\xbc\xc0\x8c\xf3\xel\xefP\xal]dE\x87\tw\xbl\xc8\x003\xac>
- \x89U\xdd\xcc\xb5X\x1d\xcf\x8c\x0e\x0e\x03\x7f\x1e]IQ")

token
The token for the current application (Python session). Only available after registering the application with
the Hypergolix service through one of the register. token () methods. This attribute is read-only.

Return bytes if the current application has a token.

Raises RuntimeError — if the current application has no token.

20 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

>>> hgxlink.token
AppToken (b' (\x191\x07&\xff$!'h\xa6\x84\xbcr\xd0\xba\xdl")

wrap_threadsafe (callback)
Wraps a blocking/synchronous function for use as a callback. The wrapped function will be called from
within a single-use, dedicated thread from the HGXLink‘s internal ThreadPoolExecutor, so as not
to block the HGXLink event loop.

This may also be used as a decorator.

>>> def threadsafe_callback (obj) :
print (obj.state)

>>> threadsafe_callback
<function threadsafe_callback at 0x00000000051CD620>

>>> # Note that the memory address changes due to wrapping
>>> hgxlink.wrap_threadsafe (threadsafe_callback)
<function threadsafe_callback at 0x00000000051CD6A8>

>>> @hgxlink.wrap_threadsafe
>>> def threadsafe_callback (obj) :
print (obj.state)

>>> threadsafe_callback
<function threadsafe_callback at 0x000000000520B488>

wrap_loopsafe (callback, *, target_loop)
Wraps an asynchronous coroutine for use as a callback. The callback will be run in target_1oop, which
must be different from the HGXLink event loop (there is no need to wrap callbacks running natively from
within the HGXLink loop). Use this to have the HGXLink run callbacks from within a different event
loop (if your application is also using asyncio and providing its own event loop).

This may also be used as a decorator.

>>> async def loopsafe_callback (obj) :
print (obj.state)

>>> loopsafe_callback
<function loopsafe_callback at 0x0000000005222488>

>>> # Note that the memory address changes due to wrapping
>>> hgxlink.wrap_loopsafe (loopsafe_callback, target_loop=byo_loop)
<function loopsafe_callback at 0x00000000051CD6A8>

>>> @hgxlink.wrap_loopsafe (target_loop=byo_loop)
>>> async def loopsafe_callback (obj):
print (obj.state)

>>> loopsafe_callback
<function loopsafe_callback at 0x000000000521A228>

start ()
Starts the HGXLink, connecting to Hypergolix and obtaining the current whoami. Must be called explic-
itly if autostart was False; otherwise, is called during HGXLink.__init_ .

>>> hgxlink.start ()
>>>

4.2. Hypergolix IPC: the HGXLink 21

Hypergolix Python integration documentation, Release 0.1.0

Note: The following methods each expose three equivalent APIs:

1.an API for the HGXLink event loop, written plainly (ex: register _token ()).

Warning: This method must only be awaited from within the internal HGXLink event loop, or it
may break the HGXLink, and will likely fail to work.

This method is a coroutine. Example usage:

token = await register_token()

2.a threadsafe external API, denoted by the _threadsafe suffix (ex: register._token_threadsafe()).

Warning: This method must not be called from within the internal HGXLink event loop, or it will
deadlock.

This method is a standard, blocking, synchronous method. Example usage:

token = register_token_threadsafe()

3.a loopsafe external API, denoted by the _loopsafe suffix (ex: register. token _loopsafe ()).

Warning: This method must not be awaited from within the internal HGXLink event loop, or it will
deadlock.

This method is a coroutine that may be awaited from your own external event loop. Example usage:

token = await register_token_loopsafe ()

stop ()

stop_threadsafe ()

stop_loopsafe ()
Called to stop the HGXLink and disconnect from Hypergolix. Must be called before exiting the main
thread, or the Python process will not exit, and must be manually halted from an operating system process
manager.

new (cls, state, api_id=None, dynamic=True, private=False)

new_threadsafe (cls, state, api_id=None, dynamic=True, private=False)

new_loopsafe (cls, state, api_id=None, dynamic=True, private=False)
Makes a new Hypergolix object.

Parameters
* cls (type)—the Hypergolix object class to use for this object. See Basic bytes interface.

* state - the state to initialize the object with. It will be immediately pushed upstream to
Hypergolix during creation of the object.

* api_id (bytes) — the API id to use for this object. If None, defaults to the cls.
_hgx_DEFAULT_APTI.

* dynamic (bool)— determines whether the created object will be dynamic (and therefore
mutable), or static (and wholly immutable).

22 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

* private (bool) — determines whether the created object will be restricted to this spe-
cific application, for this specific Hypergolix user. By default, objects created by any
Hypergolix application are available to all other Hypergolix apps for the current Hyper-
golix user.

Returns the created object.
Raises

* hypergolix.exceptions.IPCError — upon IPC failure, or improper object dec-
laration.

* Exception — for serialization failures. The specific exception type is determined by the
serialization process itself.

>>> obj = hgxlink.new_threadsafe (
cls = hgx.0Obj,
state = b'Hello world!'
)
>>> obj
<Obj with state b'Hello world!' at Ghid('Abf3d...')>
>>> # Get the full address to retrieve the object later
>>> obj.ghid.as_str()
"Abf3dRNZAPhrqY93q4Q-wG0QvPnP_
—anV8XfauVM1FOvAgeC5JVWeXTUftJ6tmYveHOstGaAJO JNOxKriTT1F6Mk="

get (cls, ghid)
get_threadsafe (cls, ghid)
get_loopsafe (cls, ghid)

Retrieves an existing Hypergolix object.

Parameters
* cls (type)—the Hypergolix object class to use for this object. See Basic bytes interface.
* ghid (Ghid) - the Ghid address of the object to retrieve.

Returns the retrieved object.

Raises

* hypergolix.exceptions.IPCError — upon IPC failure, or improper object dec-
laration.

* Exception — for serialization failures. The specific exception type is determined by the
serialization process itself.

>>> address = hgx.Ghid.from_str ('Abf3dRNZAPhrgY93g40-wG0QvPnP__
—anV8XfauVM1FOvAgeC5JVIWeXTUftJ6tmYveHOstGaAJ0 jNIXKriTT1F6Mk=")
>>> obj = hgxlink.get_threadsafe(
cls = hgx.ObjBase,
ghid = address
)
>>> obj
<Obj with state b'Hello world!' at Ghid('Abf3d...'"')>

register_token (token=None)
register_ token_threadsafe (foken=None)
register token_loopsafe (token=None)
Requests a new application token from the Hypergolix service or re-registers an existing application with

4.2,

Hypergolix IPC: the HGXLink 23

Hypergolix Python integration documentation, Release 0.1.0

the Hypergolix service. If previous instances of the app token have declared a startup object with the
Hypergolix service, returns its address.

Tokens can only be registered once per application. Subsequent attempts to register a token will raise
IPCError. Newly-registered tokens will be available at t oken.

App tokens are required for some advanced features of Hypergolix. This token should be reused whenever
(and wherever) that exact application is restarted. It is unique for every application, and every Hypergolix
user.

Parameters token (hypergolix.utils.AppToken) — the application’s pre-registered
Hypergolix token, or None to create one.

Raises hypergolix.exceptions.IPCError — if unsuccessful.
Return None if no startup object has been declared.

Return hypergolix.Ghid if a startup object has been declared. This is the address of the object,
and can be used in a subsequent get () call to retrieve it.

>>> hgxlink.register_token_threadsafe()
>>> hgxlink.token
AppToken (b' (\x191\x07&\xff$!'h\xa6\x84\xbcr\xd0\xba\xdl")

>>> # Some other time, 1in some other session
>>> app_token = AppToken (b' (\x19i\x07&\x££S5'h\xa6\x84\xbcr\xd0\xba\xdl")
>>> hgxlink.register_token_threadsafe (app_token)

register_ startup (0obj)

register_ startup_threadsafe (0bj)

register_startup_loopsafe (0bj)
Registers an object as the startup object. Startup objects are useful to bootstrap configuration, settings,
etc. They can be any Hypergolix object, and will be returned to the application at every subsequent call to
register_token (). Startup objects may only be declared after registering an app token.

Parameters ob3j — The object to register. May be any Hypergolix object.

Raises hypergolix.exceptions.UnknownToken — if no token has been registered for
the application.

>>> obj = hgxlink.new_threadsafe (Obj, state=b'hello world")
>>> hgxlink.register_startup_threadsafe (obj)

deregister_startup ()

deregister_startup_threadsafe()

deregister_startup_loopsafe ()
Registers an object as the startup object. Startup objects are useful to bootstrap configuration, settings,
etc. They can be any Hypergolix object, and will be returned to the application at every subsequent call to
register_token (). Startup objects may only be declared after registering an app token.

Raises

* hypergolix.exceptions.UnknownToken — if no token has been registered for
the application.

* Exception —if no object has be registered for startup.

>>> hgxlink.deregister_startup_threadsafe ()

register_ share_handler (api_id, handler)
register_share_handler_ threadsafe (api_id, handler)

24 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

register_share_handler_ loopsafe (api_id, handler)

Registers a handler for incoming, unsolicited object shares from other Hypergolix users. Without register-
ing a share handler, Hypergolix applications cannot receive shared objects from other users.

The share handler will also be called when other applications from the same Hypergolix user create an
object with the appropriate api_id.

The share handler callback will be invoked with three arguments: the Ghid of the incoming object, the
fingerprint Ghid of the share origin, and the hypergolix.utils.ApiID of the incoming object.

Parameters

* api_id (hypergolix.utils.ApiID) - determines what objects will be sent to the
application. Any objects shared with the current Hypergolix user with a matching api_id
will be sent to the application.

* handler - the share handler. Unless the handler can be used safely from within the
HGXLink internal event loop, it must be wrapped through wrap_threadsafe () or
wrap_loopsafe () prior to registering it as a share handler.

Raises TypeError — If the api_id is not hypergolix.utils.ApiID or the handler is
not a coroutine (wrap it using wrap_threadsafe () or wrap_loopsafe () prior to
registering it as a share handler).

Warning: Any given API ID can have at most a single share handler per app. Subsequent calls to any
of the register. _share handler () methods will overwrite the existing share handler without

warning.

>>> @hgxlink.wrap_threadsafe
. def handler(ghid, origin, api_id):
print ('Incoming object: ' + str(ghid))
print ('Sent by: ' + str(origin))
print ('With API ID: ' + str(api_id))

>>> hgxlink.register_share_handler_threadsafe (
api_id = hypergolix.utils.ApiID.pseudorandom (),
handler = handler

Basic bytes interface

Note: This assumes familiarity with Ghid and HGXL1ink objects.

Hypergolix objects

class Obj (state, api_id, dynamic, private, *, hgxlink, ipc_manager, _legroom, ghid=None, binder=None, call-

back=None)

New in version 0.1.

The basic Hypergolix object. Create it using HGXLink.get () or HGXLink.new (); these objects are not
intended to be created directly. If you create the object directly, it won’t receive state updates from upstream.

4.3. Basic bytes interface 25

Hypergolix Python integration documentation, Release 0.1.0

All Hypergolix objects have a unique, cryptographic-hash-based address (the Ghid) and a binder (roughly
speaking, the public key fingerprint of the object’s creator). They may be dynamic or static.

All Hypergolix objects have a so-called “API ID” — an arbitrary, unique, implicit identifier for the structure
of the object. In traditional web service parlance, it’s somewhere between an endpoint and a schema, which
(unfortunately) is a pretty terrible analogy.

Hypergolix objects persist nonlocally until explicitly deleted through one of the delete () methods.
Parameters

* hgxlink (HGXLink) — The currently-active HGXL1ink object used to connect to the Hy-
pergolix service.

* state — The state of the object.
* api_id (hgx.utils.ApiID)—-The APIID for the object (see above).

* dynamic (bool) — A value of True will result in a dynamic object, whose state may be
updated. False will result in a static object with immutable state.

* private (bool) — Declare the object as available to this application only (as opposed
to any application for the logged-in Hypergolix user). Setting this to True requires an
HGXLink.app_token.

* ghid (Ghid)— The Ghid address of the object.
* binder (Ghid)— The Ghid of the object’s binder.

Returns The Ob j instance, with state declared, but not initialized with Hypergolix.

Warning: Hypergolix objects are not intended to be created directly. Instead, they should always be created
through the HGXLink, using one of its HGXLink.new () or HGXLink.get () methods.

Creating the objects directly will result in them being unavailable for automatic updates, and forced to poll
through their sync () methods. Furthermore, their binder and ghid properties will be unavailable until
after the first call to push ().

>>> obj = hgxlink.new_threadsafe (
cls = hgx.0bj,
state = b'Hello world!'
)
>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR')>

state
The read-write value of the object itself. This will be serialized and uploaded through Hypergolix upon
any call to push ().

Warning: Updating state will not update Hypergolix. To upload the change, you must explicitly
call push ().

Return type bytes

>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR')>
>>> obj.state

26 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

b'Hello world!'

>>> # This change won't yet exist anywhere else

>>> obj.state = b'Hello Hypergolix!'

>>> obj

<Obj with state b'Hello Hypergolix!' at Ghid('bf3dR')>

ghid
The read-only address for the object.

Return Ghid read-only address.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR')>

>>> obj.ghid

Ghid (algo=1, address=b'\xb7\xf7u\x13Y\x00\xf8k\xa9\x8fw\xab\x84>

< \xcOm\x10\xbc\xfI9\xcf\xfd\xa9\xd5\xflw\xda\xb9S%\x14\xeb\xc0\x81\xe0\xb9
—%U\x9e]5\x1f\xb4\x9%e\xad\x99\x8b\xde\x1fK-\x19\xa0\t\xd23}
—\xcd4\xaa\xe2M=E\xe8\xc9")

>>> str(obj.ghid)

Ghid ('"bf3dR")

api_id
The read-only API ID for the object.
Return bytes read-only API ID.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.api_id

ApiID (b

< "\x00\

)

private
Whether or not the object is restricted to this application only (see above). Read-only.

Return bool read-only privacy setting.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.private

False

dynamic
Is the object dynamic (True) or static (False)? Read-only.

Return bool read-only dynamic/static status.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR')>
>>> obj.dynamic

True

binder
The read-only binder of the object. Roughly speaking, the public key fingerprint of its creator (see above).

Return Ghid read-only binder.

Basic bytes interface 27

Hypergolix Python integration documentation, Release 0.1.0

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR'")>

>>> obj.binder

Ghid (algo=1, address=b'\xf8A\xd6 \xll\xedN\xl4\xab\xeb
—"\x16\x0fs\n\x02\x08\xal\xca\xab\xcb6
—$\xa7D\xf7\xb9\xa2\xbc\xc0\x8c\xf3\xel\xefP\xal]dE\x87\tw\xbl\xc8\x003\xac>
- \x89U\xdd\xcc\xb5X\x1d\xcf\x8c\x0e\x0e\x03\x7f\x1e]IQ")

>>> str(obj.binder)

Ghid ('fhBlm'")

callback
Gets, sets, or deletes an update callback. This will be awaited every time the object receives an upstream
update, but it will not be called when the application itself calls push (). The callback will be passed a
single argument: the object itself. The object’s stat e will already have been updated to the new upstream
state before the callback is invoked.

Because they are running independently of your actual application, and are called by the HGXLink itself,
any exceptions raised by the callback will be swallowed and logged.

Parameters callback — An awaitable callback.

Warning: For threadsafe or loopsafe usage, this callback must be appropriately wrapped using
HGXLink.wrap_threadsafe () or HGXLink.wrap_loopsafe () before setting it as a call-
back.

Setting the callback:

>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> async def handler (obj):

print ('Updated! ' + repr(obj))

>>> obj.callback = handler

The resulting call:

>>>
Updated! <Obj with state b'Hello Hypergolix!' at Ghid('b£f3dR')>

__eq___ (other)
Compares two Hypergolix objects. The result will be True if (and only if) all of the following conditions
are satisfied:

1.They both have a ghid (else, raise TypeError)
2.The ghid compares equally

3.They both have a state (else, raise TypeError)
4.The state compares equally

5.They both have a binder (else, raise TypeError)

6.The binder compares equally

Parameters other — The Hypergolix object to compare with.

Return bool The comparison result.

28 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

Raises TypeError — when attempting to compare with a non-Hypergolix object.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj2

<Obj with state b'Hello world!' at Ghid('WEFUmW') >
>>> obj == obj2

False

Note: The following methods each expose three equivalent APIs:

1.an internal API (ex: push ()).

Warning: This method must only be awaited from within the internal HGXLink event loop, or it
may break the HGXLink, and will likely fail to work.

This method is a coroutine. Example usage:

await obj.push()

2.a threadsafe API, denoted by the _threadsafe suffix (ex: push_threadsafe ()).

Warning: This method must not be called from within the internal HGXLink event loop, or it will
deadlock.

This method is a standard, blocking, synchronous method. Example usage:

obj.push_threadsafe ()

3.a loopsafe API, denoted by the _loopsafe suffix (ex: push_loopsafe ()).

Warning: This method must not be awaited from within the internal HGXLink event loop, or it will
deadlock.

This method is a coroutine that may be awaited from your own external event loop. Example usage:

await obj.push_loopsafe ()

recast (cls)

recast_threadsafe (cls)

recast_loopsafe (cls)
Converts between Hypergolix object types. Returns a new copy of the current Hypergolix object, converted
to type cls.

Parameters cls — the type of object to recast into.

Returns a new version of ob j, in the current class.

4.3. Basic bytes interface 29

Hypergolix Python integration documentation, Release 0.1.0

Warning: Recasting an object renders the previous Python object inoperable and dead. It will cease
to receive updates from the HGXLink, and subsequent manipulation of the old object is likely to cause
bugs with the new object as well.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR')>

>>> obj.recast_threadsafe (hgx.JsonObj)

<JsonObj with state b'Hello world!' at Ghid('bf3dR')>

push ()

push_threadsafe ()

push_loopsafe ()
Notifies the Hypergolix service (through the HGXLink) of updates to the object. Must be called explicitly
for any changes to be available outside of the current Python session.

Raises
* hypergolix.exceptions.IPCError — if unsuccessful.

* hypergolix.exceptions.LocallyImmutable — if the object is static, or if the
current Hypergolix user did not create it.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultofa discard () call.

>>> obj

<0Obj with state b'Hello world!' at Ghid('b£f3dR')>

>>> # This state is unknown everywhere except in current memory
>>> obj.state = b'Foo'

>>> obj.state = b'Bar'

>>> # Hypergolix now has no record of b'Foo' ever existing.

>>> obj.push_threadsafe ()

>>> # The new state b'Bar' 1is now known to Hypergolix.

sync ()

sync_threadsafe ()

sync_loopsafe ()
Manually initiates an update through Hypergolix. So long as you create and retrieve objects through the
HGXLink, you will not need these methods.

Raises
* hypergolix.exceptions.IPCError — if unsuccessful.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultofa discard () call

>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.sync_threadsafe ()

share (recipient)

share_threadsafe (recipient)

share_loopsafe (recipient)
Shares the Obj instance with recipient. The recipient will receive a read-only copy of the object,
which will automatically update upon any local changes that are push () ed upstream.

30 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

Parameters recipient (Ghid) — The public key fingerprint “identity” of the entity to share
with.

Raises
* hypergolix.exceptions.IPCError — if immediately unsuccessful.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultof a discard () call.

* hypergolix.exceptions.Unsharable - if the objectis private.

Note: Successful sharing does not imply successful receipt. The recipient could ignore the share, be
temporarily unavailable, etc.

Note: In order to actually receive the object, the recipient must have a share handler defined for the
api_ id of the object.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR')>

>>> bob = hgx.Ghid.from_str ('AfhBImAR7U4Ug—
—UiFg9zCgllocgmxiSnRPe50rzAjPPh71ChXWRFhwl3scgAM6w—1VXdzLVYHc-MDg4Dfx5dSVE=")
>>> obj.share_threadsafe (bob)

freeze ()

freeze threadsafe ()

freeze_loopsafe ()
Creates a static “snapshot” of a dynamic object. This new static object will be available at its own dedicated
address.

Returns a frozen copy of the Obj (or subclass) instance. The class of the new instance will
match the class of the original.

Raises
* hypergolix.exceptions.IPCError — if unsuccessful.
* hypergolix.exceptions.LocallyImmutable — if the object is static.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultof a discard () call.

>>> obj

<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.dynamic

True

>>> frozen = obj.freeze_threadsafe ()

>>> frozen

<Obj with state b'hello world' at Ghid('RS48N'")>
>>> frozen.dynamic

False

hold ()

hold threadsafe()

hold_loopsafe ()
Creates a separate binding to the object, preventing its deletion. This does not necessarily prevent other
applications at the currently-logged-in Hypergolix user session from removing the object.

4.3.

Basic bytes interface 31

Hypergolix Python integration documentation, Release 0.1.0

Raises
* hypergolix.exceptions.IPCError — if unsuccessful.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultof a discard () call.

>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.hold_threadsafe ()

discard()

discard_ threadsafe ()

discard loopsafe ()
Notifies the Hypergolix service that the application is no longer interested in the object, but does not delete
it. This renders the object inoperable and dead, preventing most future operations. However, a new copy
of the object can still be retrieved through any of the HGXLink. get () methods.

Raises
* hypergolix.exceptions.IPCError — if unsuccessful.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultofa discard () call.

>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.discard_threadsafe ()

delete()

delete_threadsafe ()

delete_loopsafe ()
Attempts to permanently delete the object. If successful, it will be inoperable and dead. It will also
be removed from Hypergolix and made unavailable to other applications, as well as unavailable to any
recipients of an share () call, unless they have called hold ().

Raises
* hypergolix.exceptions.IPCError — if unsuccessful.

* hypergolix.exceptions.DeadObject —if the object is unavailable, for example,
asaresultof a discard () call.

>>> obj
<Obj with state b'Hello world!' at Ghid('bf3dR'")>
>>> obj.delete_threadsafe()

Hypergolix proxies

class Proxy (state, api_id, dynamic, private, *, hgxlink, ipc_manager, _legroom, ghid=None, binder=None,

callback=None)
New in version 0.1.

The Hypergolix proxy, partly inspired by weakref.proxy, is a mechanism by which almost any existing
Python object can be encapsulated within a Hypergolix-aware wrapper. In every other way, the proxy behaves
exactly like the original object. This is accomplished by overloading the Proxy.__getattr__ (),Proxy.
_ setattr_ (),and Proxy._ delattr__ () methods.

32 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

Except where otherwise noted, a Hypergolix Proxy exposes the same API as an Ob 7, except that the Hyper-
golix methods are given an hgx__ prefix to avoid namespace collisions. For example, Obj.push () becomes
Proxy.hgx_push (), and so on.

A proxy is hashable if its hgx_ghid is defined, but unhashable otherwise. Note, however, that this hash
has nothing to do with the proxied object. Also note that isinstance (proxy_obj, collections.
Hashable) will always identify an Proxy as hashable, regardless of its actual runtime behavior.

Parameters

* hgxlink (HGXLink) — The currently-active HGXL1ink object used to connect to the Hy-
pergolix service.

* state — The state of the object. For objects using the default (ie noop) serialization, this
must be bytes-like. For subclasses of Ob 7, this can be anything supported by the subclass’
serialization strategy.

* api_id (bytes)—The APIID for the object (see above). Should be a byt e s-like object
of length 64.

* dynamic (bool) — A value of True will result in a dynamic object, whose state may be
update. False will result in a static object with immutable state.

* private (bool) — Declare the object as available to this application only (as opposed
to any application for the logged-in Hypergolix user). Setting this to True requires an
HGXLink.app_token.

* ghid (Ghid) - The Ghid of the object. Used to instantiate a preexisting object.
* binder (Ghid)-The Ghid of the object’s binder. Used to instantiate a preexisting object.

Returns The Ob j instance, with state declared, but not initialized with Hypergolix.

Warning: As with Ob j objects, Proxy objects are not intended to be created directly.

Note: Support for Python special methods (aka “magic methods”, “dunder methods”, etc) is provided. How-
ever, due to implementation details in Python itself, this is accomplished by explicitly passing all possible
__dunder___ methods used by Python to the proxied object.

This has the result that IDEs will present a very long list of available methods for Proxy objects, even if these
methods are not, in fact, available. However, the built-in dir () command should still return a list limited
to the methods actually supported by the proxied:proxy combination.

Note: Proxy objects will detect other Proxy instances and subclasses, but they will not detect Ob j instances
or subclasses unless they also subclass Proxy. This is intentional behavior.

Warning: Because of how Python works, explicitly reassigning hgx_state is the only way to reassign
the value of the proxied object directly. For example, this will fail, overwriting the name of the object, and
leaving the original unchanged:

>>> obj

<Proxy to b'Hello world!' at Ghid('bf3dR')>
>>> obj = b'Hello Hypergolix!'

>>> obj

b'Hello Hypergolix!'

4.3. Basic bytes interface 33

Hypergolix Python integration documentation, Release 0.1.0

whereas this will succeed in updating the object state:

>>> obj

<Proxy to b'Hello world!' at Ghid('b£f3dR')>
>>> obj.hgx_state
>>> obj

<Proxy to b'Hello Hypergolix!' at Ghid('b£f3dR')>

b'Hello Hypergolix!'

>>> obj = hgxlink.new_threadsafe (

cls = hgx.Proxy,

state = b'Hello world!'

)

>>> obj
<Proxy to b'hello world' at Ghid('bJQM7j')>
>>> obj += b' foo'
>>> obj
<Proxy to b'hello world foo' at Ghid('bJQOMj'")>
>>> obj.state = b'bar'
>>> obj
<Proxy to b'bar' at Ghid('bJQOMj'")>

__eq__ (other)

Compares the Proxy with another object. The comparison recognizes other Hypergolix objects, compar-

ing them more thoroughly than other objects.

If other is a Hypergolix object, the comparison will return True if and only if:

1.The Obj.ghid attribute compares equally
2.The Obj. state attribute compares equally

3.The Obj.binder attribute compares equally

If, on the other hand, the ot her object is not a Hypergolix object or proxy, it will directly compare ot her

with hgx_state.
Parameters other — The object to compare with

Return type bool

>>> obj

<Proxy to b'Hello world!' at Ghid('bf3dR'"')>
>>> obj2

<Proxy to b'Hello world!' at Ghid ('WEUmwW') >
>>> obj == obj2

False

>>> not_hgx_obj = b'Hello world!'

>>> not_hgx_obj == obj

True

>>> obj2 == not_hgx_obj

True

Serialized Python objects

34

Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

Note: This assumes familiarity with HGXLink, Ghid, Obj, and Proxy objects.

JSON serialization

class JsonObj (state, api_id, dynamic, private, *, hgxlink, ipc_manager, _legroom, ghid=None, binder=None,

callback=None)
New in version 0.1.

A Hypergolix object that uses the built-in json library for serialization. The resulting string is then encoded in
UTF-8. Use it exactly as you would any other Ob j object.

Warning: TypeErrors as a result of improper state declarations will not be reported until their value
is pushed upstream via Ob j. push () or equivalent.

>>> obj = hgxlink.new_threadsafe (

cls = hgx.JsonObj,

state = 'Hello Json!',

)

>>> obj
<JsonObj with state 'Hello Json!' at Ghid('bf3dR')>
>>> obj.state = 5
>>> obj
<JsonObj with state 5 at Ghid('bf3dR')>
>>> obj.state = {'seven': 7}
>>> obj
<JsonObj with state {'seven': 7} at Ghid('bf3dR")>

class JsonProxy (state, api_id, dynamic, private, *, hgxlink, ipc_manager, _legroom, ghid=None,

binder=None, callback=None)
New in version 0.1.

A Hypergolix proxy that uses the built-in json library for serialization. The resulting string is then encoded in
UTF-8. Use it exactly as you would any other Proxy object.

Warning: TypeErrors as a result of improper hgx_state declarations will not be reported until their
value is pushed upstream via Obj._hgx_push () or equivalent.

>>> obj = hgxlink.new_threadsafe (
cls = hgx.JsonProxy,
state = 'Hello Json!',
)
>>> obj
<JsonProxy to 'Hello Json!' at Ghid('bf3dR')>
>>> obj.hgx_state = 5

>>> obj

<JsonProxy to 5 at Ghid('bf3dR')>
>>> obj.hgx_state = {'seven': 7}
>>> obj

<JsonProxy to {'seven': 7} at Ghid('bf3dR')>

4.4. Serialized Python objects 35

Hypergolix Python integration documentation, Release 0.1.0

Pickle serialization

class PickleObj (state, api_id, dynamic, private, *, hgxlink, ipc_manager, _legroom, ghid=None,

binder=None, callback=None)
New in version 0.1.

A Hypergolix object that uses the built-in pickle library for serialization. The resulting string is then encoded
in UTF-8. Use it exactly as you would any other Ob j object.

Danger: Never use pickle to de/serialize objects from an untrusted source. Because pickle allows
objects to control their own deserialization, retrieving such an object effectively gives the object creator full
control over your computer (within the privilege limits of the current Python process).

Warning: TypeErrors as a result of improper state declarations will not be reported until their value
is pushed upstream via Ob j. push () or equivalent.

>>> obj = hgxlink.new_threadsafe (

cls = hgx.PickleObj,

state = 'Hello Pickle!’,

)

>>> obj
<PickleObj with state 'Hello Pickle!' at Ghid('bf3dR"')>
>>> obj.state = 5
>>> obj
<PickleObj with state 5 at Ghid('bf3dR')>
>>> obj.state = {'seven': 7}
>>> obj
<PickleObj with state {'seven': 7} at Ghid('bf3dR"')>

class PickleProxy (state, api_id, dynamic, private, *, hgxlink, ipc_manager, _legroom, ghid=None,

binder=None, callback=None)
New in version 0.1.

A Hypergolix proxy that uses the built-in pick1le library for serialization. The resulting string is then encoded
in UTF-8. Use it exactly as you would any other Proxy object.

Danger: Never use pickle to de/serialize objects from an untrusted source. Because pickle allows
objects to control their own deserialization, retrieving such an object effectively gives the object creator full
control over your computer (within the privilege limits of the current Python process).

Warning: TypeErrors as a result of improper hgx_state declarations will not be reported until their
value is pushed upstream via Obj . hgx_push () or equivalent.

>>> obj = hgxlink.new_threadsafe (
cls = hgx.PickleProxy,
state = 'Hello Pickle!’,
)
>>> obj
<PickleProxy to 'Hello Pickle!' at Ghid('bf3dR'")>
>>> obj.hgx_state = 5

36 Chapter 4. API reference

Hypergolix Python integration documentation, Release 0.1.0

>>> obj

<PickleProxy to 5 at Ghid('bf3dR'")>

>>> obj.hgx_state = {'seven': 7}

>>> obj

<PickleProxy to {'seven': 7} at Ghid('bf3dR'")>

Custom serialization

Custom serialization of objects can be easily added to Hypergolix by subclassing Ob j or Proxy and overriding:
1. class attribute _hgx_DEFAULT_API
2. staticmethod or classmethod coroutine hgx_pack (state)
3. staticmethod or classmethod coroutine hgx_unpack (packed)

A (non-functional) toy example follows:

from hgx.utils import ApiID
from hgx import Obj
from hgx import Proxy

class ToySerializer:
""" An Obj that customizes serialization.

rrr

_hgx_DEFAULT_API = ApiID (bytes (63) + b'\x04")

@staticmethod
async def hgx_pack (state):
""" Packs the state into bytes.

rro

return bytes (state)

@staticmethod
async def hgx_unpack (packed) :
""" Unpacks the state from bytes.

rro

return object (packed)

class ToyObj(ToySerializer, Obj):
pass

class ToyProxy (ToySerializer, Proxy):
pass

4.4. Serialized Python objects 37

Hypergolix Python integration documentation, Release 0.1.0

38

Chapter 4. API reference

CHAPTER B

Example Hypergolix applications and tutorials

“Telemeter” remote monitoring example application

Telemeter is a very basic Python application. It uses psutil to monitor system usage, and then pairs with another
Hypergolix identity, broadcasting its system usage on an interval controlled by the remote monitor.

Getting started

After installing Hypergolix, make sure you configure (hypergolix config --add hgx) and run it
(hypergolix start app) on both the monitoring (from now on, the “monitor””) and monitored (from now on,
the “server”’) computers. Ideally, also register Hypergolix (hypergolix config —-register) for the server,
to avoid hitting the storage limit for (read-only) free accounts.

Now, set up a project directory and a virtual environment. Don’t forget to pip install hgx in the environment.
I’1l use these:

mkdir telemeter

cd telemeter

python3 -m venv env
env/bin/pip install hgx

Warning: On Windows, replace every env/bin/pip or env/bin/python with env/Scripts/pip and
env/Scripts/python, respectively.

Hypergolix “Hello world”

To get things started, let’s just write a quick application using the blocking (threadsafe) APIL. It’ll just loop forever,
recording a timestamp for every loop.

39

Hypergolix Python integration documentation, Release 0.1.0

To start, we need to create the Hypergolix inter-process communication link, so we can talk to Hypergolix, and define
an interval:

class Telemeter:
""" Remote monitoring demo app.

rr

def _ init_ (self, interval):
self.hgxlink = hgx.HGXLink ()
self.interval = interval

Now, to set up the app, we want to create a Hypergolix object where we’ll store the timestamps. We could make our
own serialization system, but Hypergolix ships with JSON objects available, so let’s use those:

def app_init (self):
""" Set up the application.
rr
self.status_reporter = self.hgxlink.new_threadsafe(
cls = hgx.JsonObj,
state = 'Hello world!'

And finally, let’s make an app loop to continually update the timestamp until we press Ctr1+C:

def app_run(self):

""" Do the main application loop.

rr

while True:
timestamp = datetime.datetime.now() .strftime('%Y.S%M. @ $H:%M:%S'")
self.status_reporter.state = timestamp
self.status_reporter.push_threadsafe ()
print ('Logged ' + timestamp)
time.sleep(self.interval)

That’s all that we need for “Hello world”! Putting it all together, and adding an entry point so we can invoke the script
as env/bin/python telemeter.py:

import time
import datetime
import hgx

class Telemeter:
""" Remote monitoring demo app.

rrr

def _ init_ (self, interval):
self.hgxlink = hgx.HGXLink ()
self.interval = interval

These are the actual Hypergolix business parts
self.status_reporter = None

def app_init (self):
""" Set up the application.

rro

self.status_reporter = self.hgxlink.new_threadsafe (
cls = hgx.JsonObj,

40 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

state = 'Hello world!'
)

print ('Created status object: ' + self.status_reporter.ghid.as_str())

def app_run(self):

""" Do the main application loop.

Py

while True:
timestamp = datetime.datetime.now() .strftime ('%Y.%m. @ $H:%M:%S'")
self.status_reporter.state = timestamp
self.status_reporter.push_threadsafe ()
print ('Logged ' + timestamp)
time.sleep(self.interval)

if _ name_ == "_ _main_ ":
try:
app = Telemeter (interval=))
app.app_init ()
app.app_run ()

finally:
app.hgxlink.stop_threadsafe ()

Great! Now we have a really simple Hypergolix app. But at the moment, it’s not particularly useful — sure, we’re
logging timestamps, but nobody can see them. Though, if you’re feeling particularly adventurous, you could open up
a Python interpreter and manually retrieve the status like this:

>>> import hgx

>>> hgxlink = hgx.HGXLink ()

>>> # Make sure to replace this with the "Created status object: <GHID>"
>>> ghid = hgx.Ghid.from_str ('<GHID>")

>>> status_reporter = hgxlink.get_threadsafe (cls=hgx.JsonObj, ghid=ghid)
>>> status_reporter.state

'2016.12.14 @ 09:17:10"

>>> # Wait 5 seconds and...

>>> status_reporter.state

'2016.12.14 @ 09:17:15"

If you keep calling status_reporter.state, you'll see the timestamp automatically update. Neat! But, we
want to do a little more...

A budfix, plus pairing

We want Telemeter to talk to another computer. To do that, we need to register a share handler. Share handlers tell
Hypergolix that an application is available to handle specific kinds of objects from other Hypergolix accounts. But
first, if you watched stdout closely in the last step, you might have seen a bug:

Logged 2016.12.14 @ 09:17:10
Logged 2016.12.14 @ 09:17:15
Logged 2016.12.14 @ 09:17:20
Logged 2016.12.14 @ 09:17:25
Logged 2016.12.14 @ 09:17:31
Logged 2016.12.14 @ 09:17:36
Logged 2016.12.14 @ 09:17:41

5.1. “Telemeter”’ remote monitoring example application 41

Hypergolix Python integration documentation, Release 0.1.0

Logged 2016.12.14 @ 09:17:46
Logged 2016.12.14 @ 09:17:52

Notice how the clock is wandering? The Obj.push_threadsafe () takes some time — it needs to talk to the
Hypergolix server. A permanent solution might use a generator to constantly generate intervals based on the initial
time, but a quick and dirty solution is just to change the t ime . s1leep call to compensate for the delay:

def app_run(self):
""" Do the main application loop.
while True:
timestamp = datetime.datetime.now ()
timestr = timestamp.strftime ('%Y.%m. @ $H:%M:%S'")

self.status.state = timestr
self.status.push_threadsafe ()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds ()
print ('Logged {0} in {1:.3f} seconds.'.format (timestr, elapsed))
time.sleep(self.interval - elapsed)

With that sorted, we can start working on pairing. Thinking a bit about how we want the app to work, we’d like the
server to automatically log its status, and for some other computer to occasionally check in on it. But we don’t want
anyone and everyone to have access to our server’s CPU status! So as a quick approximation, let’s set up a trust-on-
first-connect construct: the first account that connects to the server can watch its status, but any subsequent account
cannot.

But first, the server needs to know that the monitor is trying to connect. So we’ll define a dedicated pairing object:
a small, special object that the monitor can send the server, to request the server’s status. To do that, we’ll create a
specific pairing APT ID.

Hypergolix uses APT IDs as a kind of schema identifier for objects. Their meaning is application-specific, but in
general you should generate a random API ID using hgx.utils.ApiID.pseudorandom () to avoid accidental
collisions with other applications. APT IDs are used in three ways:

1. In general, to explicitly define the object’s format and/or purpose
2. For Hypergolix, to dispatch shared objects to applications that have registered share handlers for them
3. For applications, to handle the actual objects

To pair, we’re first going to generate (and then, in this case, hard-code) a random API ID. We’ll use this to identify
objects whose sole purpose is for the monitor to announce its existence to the server:

PAIR_API - hgx.utils.ApiID (
b'\x17\n\x12\x17\x03\x0£\x14\x11\x07\x10\x05\x04"' +
b'\x14\x18\x11\x11\x12\x02\x17\x12\x15\x0e\x04"' +
b'\x0£f\x11\x19\x07\x19\n\r\x03\x06\x12\x04\x17"' +
b'\x11\x14\x07\t\x08\x13\x19\x04\n\x0£\x15\x12"' +
b'\x14\x07\x19\x16\x13\x18\x0b\x18\x0e\x12\x15\n"' +
b'\n\x16\x0£\x08\x14"

Now, on the server application, we’re going to register a share handler for that APT ID:

def pair_handler (self, ghid, origin, api_id):
""" Pair handlers ignore the object itself, instead setting up
the origin as the paired fingerprint (unless one already exists,
in which case it 1is ignored) and sharing the status object with

42 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

them.

This also doubles as a way to re—-palr the same fingerprint, 1in
the event that they have gone offline for a long time and are no
longer receiving updates.
rr
The initial pairing (pair/trust on first connect)
if self.paired_fingerprint is None:

self.paired_fingerprint = origin

Subsequent paliring requests from anyone else are ignored
elif self.paired_fingerprint != origin:
return

Now we want to share the status reporter, if we have one, with the

origin

if self.status_reporter is not None:
self.status_reporter.share_threadsafe (origin)

Share handlers are invoked with the Ghid ghid of the object being shared, the Ghid origin of the account that
shared it, and the hgx.utils.ApiID api_id of the object itself. So when our server gets a shared object with
the correct API 1ID, it will check to see if it already has a monitor, and, if so, if the pair request is coming from the
existing handler (that’s the “trust on first connect” bit). If someone else tries to pair, the handler returns immediately,
doing nothing. Otherwise, it shares the status object with the monitor.

Now, before we register the share handler (pair_handler) with the HGXL1ink, we need to wrap the handler so that
the link’s internal event loop can await it:

Share handlers are called from within the HGXLink event loop, so they
must be wrapped before use

pair_handler = self.hgxlink.wrap_threadsafe(self.pair_handler)
self.hgxlink.register_share_handler_threadsafe (PAIR_API, pair_handler)

Now the server is set up to pair with the monitor, though the monitor can’t do anything yet. Putting it all together:

import time
import datetime
import hgx

These are app-specific (here, totally random) API schema identifiers

STATUS_API = hgx.utils.ApiID(
b'\x02\x0b\x16\x19\x00\x19\x10\x18\x08\x12\x03"'
b'\x11\x07\x07\r\x0c\n\x14\x04\x13\x07\x04\x06"'
b'\x13\x01\x0c\x04\x00\x0b\x03\x01\x12\x05\x0f"'
b'\x01\x0c\x05\x11\x03\x01\x0e\x13\x16\x13\x11"
b'\x10\x13\t\x06\x10\x00\x14\x0c\x15\x0b\x07"' +
b'\x0c\x0c\x04\x07\x0b\x0£\x18\x03"'

+ 4+ + +

)

PAIR_API = hgx.utils.ApiID(
b'\x17\n\x12\x17\x03\x0£\x14\x11\x07\x10\x05\x04"' +
b'\x14\x18\x11\x11\x12\x02\x17\x12\x15\x0e\x04"' +
b'\x0£f\x11\x19\x07\x19\n\r\x03\x06\x12\x04\x17"' +
b'\x11\x14\x07\t\x08\x13\x19\x04\n\x0£\x15\x12"' +
b'\x14\x07\x19\x16\x13\x18\x0b\x18\x0e\x12\x15\n"' +
b'\n\x16\x0f\x08\x14"

5.1. “Telemeter”’ remote monitoring example application 43

Hypergolix Python integration documentation, Release 0.1.0

class Telemeter:

rrr

rro

def

def

def

def

Remote monitoring demo app sender.

__init_ (self, interval):
self.hgxlink = hgx.HGXLink ()
self.interval = interval

These are the actual Hypergolix business parts
self.status = None
self.paired_fingerprint = None

app_init (self):
""" Set up the application.

rro

self.status = self.hgxlink.new_threadsafe (
cls = hgx.JsonObj,
state = 'Hello world!',

api_id = STATUS_API

Share handlers are called from within the HGXLink event loop, so they
must be wrapped before use

pair_handler = self.hgxlink.wrap_threadsafe(self.pair_handler)
self.hgxlink.register_share_handler_threadsafe (PAIR_API, pair_handler)

app_run (self):
""" Do the main application loop.
rr
while True:
timestamp = datetime.datetime.now ()
timestr = timestamp.strftime ('$Y.%m.%d @ SH:%M:%S")

self.status.state = timestr
self.status.push_threadsafe ()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds()
print ('Logged {0} in {1:.3f} seconds.'.format (timestr, elapsed))
time.sleep(self.interval - elapsed)

pair_handler(self, ghid, origin, api_id):

""" Pair handlers ignore the object itself, instead setting up
the origin as the paired fingerprint (unless one already exists,
in which case it is ignored) and sharing the status object with
them.

This also doubles as a way to re-pair the same fingerprint, 1in
the event that they have gone offline for a long time and are no
longer receiving updates.
rr
The initial pairing (palir/trust on first connect)
if self.paired_fingerprint is None:

self.paired_fingerprint = origin

Subsequent paliring requests from anyone else are ignored
elif self.paired_fingerprint != origin:
return

44

Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

Now we want to share the status reporter, if we have one, with the

origin

if self.status_reporter is not None:
self.status_reporter.share_threadsafe (origin)

if name == "_ _main_ ":

try:
app = Telemeter (interval=5)
app.app_init ()
app.app_run ()

finally:
app.hgxlink.stop_threadsafe ()

Pairing, client-side

Status check: the server is ready to broadcast timestamps to the monitor, but the monitor doesn’t know how to request,
nor receive them. So we’ll create a monitor object that creates a pair request on startup:

class Monitor:
""" Remote monitoring demo app receiver.

rrr

def _ _init__ (self, telemeter_fingerprint):
self.hgxlink = hgx.HGXLink ()
self.telemeter_fingerprint = telemeter_fingerprint

These are the actual Hypergolix business parts
self.status = None
self.pair = None

def app_init (self):
""" Set up the application.
Wait until after registering the share handler to avoid a race
condition with the Telemeter
self.pair = self.hgxlink.new_threadsafe(
cls = hgx.JsonObj,
state = 'Hello world!"',
api_id = PAIR_API
)

self.pair.share_threadsafe(self.telemeter_fingerprint)

With that, the Monitor can request the server’s status. Thus far, our app’s logic flow looks like this:
1. Start server telemeter
2. Server logs timestamps, waiting for pairing request
3. Monitor sends pairing request
4. Server responds with the timestamp object

But, the monitor doesn’t know how to do anything with the server’s timestamp object yet, so let’s revisit the monitor.
This time around, we’ll make use of the HGXL1ink‘s native async API for the share handler to make the code a little

cleaner:

5.1. “Telemeter”’ remote monitoring example application 45

Hypergolix Python integration documentation, Release 0.1.0

async def status_handler(self, ghid, origin, api_id):

""" We sent the pairing, and the Telemeter shared its status obj
with us in return. Get 1it, store it locally, and register a
callback to run every time the object is updated.
status = await self.hgxlink.get (

cls = hgx.JsonObj,

ghid = ghid
)
This registers the update callback. It will be run in the hgxlink
event loop, so if it were blocking/threaded, we would need to wrap
it like this: self.hgxlink.wrap_threadsafe (self.update_handler)
status.callback = self.update_handler
We're really only doing this to prevent garbage collection
self.status = status

As before, we need to handle the incoming object’s address, origin, and APT ID. But this time, we want to actually
do something with the object: we’ll store it locally under self.status, and then we register the following simple
callback to run every time Hypergolix gets an update for it:

async def update_handler (self, obj):
""" A very simple, xxasynchronousxx handler for status updates.
This will be called every time the Telemeter changes their
status.

rro

print (obj.state)

For simplicity’s sake, we’ll add a busy-wait loop for the monitor, and a small argparser to switch between the
server “telemeter” and the monitor “telemeter”. Don’t forget to actually register the share handler (look in Monitor.
app_init), and then we’re good to go! Summing up:

import argparse
import time
import datetime
import hgx

These are app-specific (here, totally random) API schema identifiers

STATUS_API = hgx.utils.ApiID (
b'\x02\x0b\x16\x19\x00\x19\x10\x18\x08\x12\x03"
b'\x11\x07\x07\r\x0c\n\x14\x04\x13\x07\x04\x06"'
b'\x13\x01\x0c\x04\x00\x0b\x03\x01\x12\x05\x0£"'
b'\x01\x0c\x05\x11\x03\x01\x0e\x13\x16\x13\x11"
b'\x10\x13\t\x06\x10\x00\x14\x0c\x15\x0b\x07"' +
b'\x0c\x0c\x04\x07\x0b\x0£\x18\x03"'

+ o+ + o+

)

PAIR_API = hgx.utils.ApilID (
b'\x17\n\x12\x17\x03\x0£\x14\x11\x07\x10\x05\x04"' +
b'\x14\x18\x11\x11\x12\x02\x17\x12\x15\x0e\x04"' +
b'\x0£f\x11\x19\x07\x19\n\r\x03\x06\x12\x04\x17"' +
b'\x11\x14\x07\t\x08\x13\x19\x04\n\x0£\x15\x12"' +
b'\x14\x07\x19\x16\x13\x18\x0b\x18\x0e\x12\x15\n"' +
b'\n\x16\x0f\x08\x14"

class Telemeter:
""" Remote monitoring demo app sender.

46 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

def _ init__ (self, interval):
self.hgxlink = hgx.HGXLink ()
self.interval = interval

These are the actual Hypergolix business parts
self.status = None
self.paired_fingerprint = None

def app_init (self):
""" Set up the application.

rro

print ('My fingerprint is: ' + self.hgxlink.whoami.as_str())
self.status = self.hgxlink.new_threadsafe

cls = hgx.JsonObj,

state = 'Hello world!"',

api_id = STATUS_API

Share handlers are called from within the HGXLink event loop, so they
must be wrapped before use

pair_handler = self.hgxlink.wrap_threadsafe(self.pair_handler)
self.hgxlink.register_share_handler_threadsafe (PAIR_API, pair_handler)

def app_run(self):
""" Do the main application loop.
rr
while True:
timestamp = datetime.datetime.now ()
timestr = timestamp.strftime ('$Y.%m.2%d @ SH:3M:%S")

self.status.state = timestr
self.status.push_threadsafe()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds()
print ('Logged {0} in {1:.3f} seconds.'.format (timestr, elapsed))
time.sleep(self.interval - elapsed)

def pair_handler(self, ghid, origin, api_id):
""" Pair handlers ignore the object itself, instead setting up
the origin as the paired_fingerprint (unless one already exists,
in which case it is ignored) and sharing the status object with
them.

This also doubles as a way to re-pair the same fingerprint, 1in
the event that they have gone offline for a long time and are no
longer receiving updates.
v
The initial pairing (pair/trust on first connect)
if self.paired_fingerprint is None:

self.paired_fingerprint = origin

Subsequent pairing requests from anyone else are ignored
elif self.paired_fingerprint != origin:

return

Now we want to share the status reporter, if we have one, with the

5.1. “Telemeter”’ remote monitoring example application 47

Hypergolix Python integration documentation, Release 0.1.0

origin
if self.status is not None:
self.status.share_threadsafe (origin)

class Monitor:
""" Remote monitoring demo app receiver.

rro

def _ init_ (self, telemeter_fingerprint):
self.hgxlink = hgx.HGXLink ()
self.telemeter_fingerprint = telemeter_fingerprint

These are the actual Hypergolix business parts
self.status = None
self.pair = None

def app_init (self):
""" Set up the application.
Because we're using a native coroutine for this share handler, it
needs no wrapping.
self.hgxlink.register_share_handler_threadsafe (STATUS_APTI,
self.status_handler)

Wait until after registering the share handler to avoid a race
condition with the Telemeter

self.pair = self.hgxlink.new_threadsafe (
cls = hgx.JsonObj,
state = 'Hello world!",

api_id = PAIR_API
)

self.pair.share_threadsafe(self.telemeter_fingerprint)

async def status_handler(self, ghid, origin, api_id):

""" We sent the pairing, and the Telemeter shared its status obj
with us in return. Get it, store it locally, and register a
callback to run every time the object is updated.
rr
status = await self.hgxlink.get (

cls = hgx.JsonObj,

ghid = ghid
)
This registers the update callback. It will be run in the hgxlink
event loop, so if it were blocking/threaded, we would need to wrap
it like this: self.hgxlink.wrap_ threadsafe (self.update_handler)
status.callback = self.update_handler
We're really only doing this to prevent garbage collection
self.status = status

async def update_handler (self, obj):
""" A very simple, ##asynchronousxx* handler for status updates.
This will be called every time the Telemeter changes their
status.

rro

print (obj.state)

def app_run(self):

48 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

""" For now, just busy-wait.
rr
while True:

time.sleep(l)

if name == "__main__ ":
argparser = argparse.ArgumentParser (
description = 'A simple remote telemetry app.'
)
argparser.add_argument (
'-—-telereader’',
action = 'store',
default = None,
help = 'Pass a Telemeter fingerprint to run as a reader.'
)

args = argparser.parse_args ()

if args.telereader is not None:
telemeter_fingerprint = hgx.Ghid.from_str (args.telereader)
app = Monitor (telemeter_fingerprint)

else:
app = Telemeter (interval=5)

try:
app.app_init ()
app.app_run ()

finally:
app.hgxlink.stop_threadsafe ()

Pairing, client-side

Now that we’ve got the server and the monitor talking, it’s time to make them actually do something worthwhile. First,
let’s make the logging interval adjustable in the Telemeter:

INTERVAL_API = hgx.utils.ApiID(

b'\n\x10\x04\x00\x13\x11\x0b\x11\x06\x02\x19\x00"' +
b'\x11\x12\x10\x10\n\x14\x19\x15\x11\x18\x0£\x0£f"' +
b'\x01\r\x0c\x15\x16\x04\x0£\x18\x19\x13\x14\x11"' +
b'\x10\x01\x19\x19\x15\x0b\t\x0e\x15\r\x16\x15"' +

b'\x0e\n\x19\x0b\x14\r\n\x04\x0c\x06\x03\x13\x01"' +

b'\x01\x12\x05"

def interval_handler(self, ghid, origin, api_id):

""" Interval handlers change our recording interval.

rrr
Ignore requests that don't match our pairing.
This will also catch un-paired requests.
if origin != self.paired_fingerprint:
return

If the address matches our pairing, use it to change our interval.
else:

5.1. “Telemeter”’ remote monitoring example application 49

Hypergolix Python integration documentation, Release 0.1.0

We don't need to create an update callback here, because any
upstream modifications will automatically be passed to the
object. This is true of all hypergolix objects, but by using a
proxy, it mimics the behavior of the int itself.
interval_proxy = self.hgxlink.get_threadsafe(

cls = hgx.JsonProxy,

ghid = ghid
)

self._interval = interval_proxy

@property
def interval (self):
""" This provides some consumer-side protection against
malicious interval proxies.
rr
try:
return float (max(self._interval, self.minimum_interval))

except (ValueError, TypeError):
return self.minimum_interval

And now let’s add some code to the Monitor to adjust the interval remotely:

def set_interval (self, interval):
""" Set the recording interval remotely.
rrr
This is some supply-side protection of the interval.
interval = float (interval)

if self.interval is None:
self.interval = self.hgxlink.new_threadsafe (
cls = hgx.JsonProxy,
state = interval,
api_id = INTERVAL_API
)
self.interval.hgx_share_threadsafe (self.telemeter_fingerprint)
else:
We can't directly reassign the proxy here, because it would just
overwrite the self.interval name with the interval float from
above. Instead, we need to assign to the state.
self.interval.hgx_state = interval
self.interval.hgx_push_threadsafe ()

Now for a status check. We should be able to run the telemeter and adjust the interval remotely:

import argparse
import time
import datetime
import hgx

These are app-specific (here, totally random) API schema identifiers

STATUS_API = hgx.utils.ApilID (
b'\x02\x0b\x16\x19\x00\x19\x10\x18\x08\x12\x03"'
b'\x11\x07\x07\r\x0c\n\x14\x04\x13\x07\x04\x06"'
b'\x13\x01\x0c\x04\x00\x0b\x03\x01\x12\x05\x0f"'
b'\x01\x0c\x05\x11\x03\x01\x0e\x13\x16\x13\x11"
b'\x10\x13\t\x06\x10\x00\x14\x0c\x15\x0b\x07"' +

+ 4+ + +

50 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

b'\x0c\x0c\x04\x07\x0b\x0£\x18\x03"'
)
PAIR_API = hgx.utils.ApiID(
b'\x17\n\x12\x17\x03\x0f\x14\x11\x07\x10\x05\x04"' +
b'\x14\x18\x11\x11\x12\x02\x17\x12\x15\x0e\x04"' +
b'\x0£f\x11\x19\x07\x19\n\r\x03\x06\x12\x04\x17"' +
b'\x11\x14\x07\t\x08\x13\x19\x04\n\x0£f\x15\x12"' +

b'\x14\x07\x19\x16\x13\x18\x0b\x18\x0e\x12\x15\n"' +
b'\n\x16\x0f\x08\x14"

)

INTERVAL_API = hgx.utils.ApiID (
b'\n\x10\x04\x00\x13\x11\x0b\x11\x06\x02\x19\x00"' +
b'\x11\x12\x10\x10\n\x14\x19\x15\x11\x18\x0£f\x0f' +
b'\x01\r\x0c\x15\x16\x04\x0£\x18\x19\x13\x14\x11"' +
b'\x10\x01\x19\x19\x15\x0b\t\x0e\x15\r\x16\x15"' +
b'\x0e\n\x19\x0b\x14\r\n\x04\x0c\x06\x03\x13\x01"' +

b'\x01\x12\x05"'

class Telemeter:
""" Remote monitoring demo app sender.

rro

def _ init_ (self, interval, minimum_interval=1):
self.hgxlink = hgx.HGXLink ()
self._interval = interval
self.minimum_interval = minimum_interval

These are the actual Hypergolix business parts
self.status = None
self.paired_fingerprint = None

def app_init (self):
""" Set up the application.

rro

print ('My fingerprint is: ' + self.hgxlink.whoami.as_str())
self.status = self.hgxlink.new_threadsafe (

cls = hgx.JsonObj,

state = 'Hello world!"',

api_id = STATUS_API

Share handlers are called from within the HGXLink event loop, so they

must be wrapped before use

pair_handler = self.hgxlink.wrap_threadsafe(self.pair_handler)

self.hgxlink.register_share_handler_threadsafe (PAIR_API, pair_handler)

And set up a handler to change our interval

interval_handler = self.hgxlink.wrap_threadsafe(self.interval_handler)

self.hgxlink.register_share_handler_threadsafe (INTERVAL_API,
interval_handler)

def app_run(self):
""" Do the main application loop.
rr
while True:
timestamp = datetime.datetime.now ()
timestr = timestamp.strftime('$Y.%m.2%d @ SH:3M:%S")

5.1. “Telemeter”’ remote monitoring example application 51

Hypergolix Python integration documentation, Release 0.1.0

self.status.state = timestr
self.status.push_threadsafe ()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds ()
print ('Logged {0} in {1:.3f} seconds.'.format (timestr, elapsed))
Make sure we clamp this to non—negative values, in case the

update took longer than the current interval.
time.sleep(max(self.interval - elapsed, 0))

def pair_handler(self, ghid, origin, api_id):
""" Pair handlers ignore the object itself, instead setting up
the origin as the paired fingerprint (unless one already exists,
in which case it is ignored) and sharing the status object with
them.

This also doubles as a way to re-pair the same fingerprint, in
the event that they have gone offline for a long time and are no
longer receiving updates.
The initial pairing (pair/trust on first connect)
if self.paired_fingerprint is None:

self.paired_fingerprint = origin

Subsequent pairing requests from anyone else are ignored
elif self.paired_fingerprint != origin:
return

Now we want to share the status reporter, if we have one, with the
origin
if self.status is not None:

self.status.share_threadsafe (origin)

def interval handler(self, ghid, origin, api_id):
""" Interval handlers change our recording interval.
rr
Ignore requests that don't match our pairing.
This will also catch un-paired requests.
if origin != self.paired_fingerprint:
return

If the address matches our pairing, use it to change our interval.
else:
We don't need to create an update callback here, because any
upstream modifications will automatically be passed to the
object. This is true of all hypergolix objects, but by using a
proxy, it mimics the behavior of the int itself.
interval_proxy = self.hgxlink.get_threadsafe (
cls = hgx.JsonProxy,
ghid = ghid
)

self._interval = interval_proxy

@property

def interval (self):
''"! This provides some consumer-side protection against
malicious interval proxies.

rro

52 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

try:
return float (max(self._interval, self.minimum_interval))

except (ValueError, TypeError):
return self.minimum_interval

class Monitor:

rrr

rro

def

def

def

Remote monitoring demo app receilver.

__init__ (self, telemeter_fingerprint):
self.hgxlink = hgx.HGXLink ()
self.telemeter_fingerprint = telemeter_fingerprint

These are the actual Hypergolix business parts
self.status = None

self.pair = None

self.interval = None

app_init (self):

""" Set up the application.

Because we're using a native coroutine for this share handler, it

needs no wrapping.

self.hgxlink.register_share_handler_threadsafe (STATUS_APT,
self.status_handler)

Wait until after registering the share handler to avoid a race
condition with the Telemeter

self.pair = self.hgxlink.new_threadsafe (
cls = hgx.JsonObj,
state = 'Hello world!",

api_id = PAIR_API
)

self.pair.share_threadsafe(self.telemeter_fingerprint)

app_run (self) :
""" For now, just busy-wait.
rr
while True:
time.sleep(l)

async def status_handler(self, ghid, origin, api_id):

""" We sent the pairing, and the Telemeter shared its status obj
with us in return. Get it, store it locally, and register a
callback to run every time the object is updated.
rr
status = await self.hgxlink.get (

cls = hgx.JsonObj,

ghid = ghid
)
This registers the update callback. It will be run in the hgxlink
event loop, so if it were blocking/threaded, we would need to wrap
it like this: self.hgxlink.wrap_ threadsafe (self.update_handler)
status.callback = self.update_handler
We're really only doing this to prevent garbage collection
self.status = status

5.1. “Telemeter”’ remote monitoring example application 53

Hypergolix Python integration documentation, Release 0.1.0

async def update_handler (self, obj):
""" A very simple, #*asynchronousx*x* handler for status updates.
This will be called every time the Telemeter changes their
status.

rro

print (obj.state)

def set_interval (self, interval):
""" Set the recording interval remotely.
This is some supply-side protection of the interval.
interval = float (interval)

if self.interval is None:
self.interval = self.hgxlink.new_threadsafe (
cls = hgx.JsonProxy,
state = interval,
api_id = INTERVAL_APT
)
self.interval.hgx_share_threadsafe(self.telemeter_fingerprint)
else:
We can't directly reassign the proxy here, because it would just
overwrite the self.interval name with the interval float from
above. Instead, we need to assign to the state.
self.interval.hgx_state = interval
self.interval.hgx_push_threadsafe ()

if _ name_ == "_ main_ ":
argparser = argparse.ArgumentParser (
description = 'A simple remote telemetry app.'

)
argparser.add_argument (
'-—telereader’',

action = 'store',
default = None,
help = 'Pass a Telemeter fingerprint to run as a reader.'

)
argparser.add_argument (
'-—interval',
action = 'store',
default = None,
type = float,
help = 'Set the Telemeter recording interval from the Telereader. ' +
'Ignored by a Telemeter.'
)

args = argparser.parse_args()

if args.telereader is not None:
telemeter_fingerprint = hgx.Ghid.from_str (args.telereader)
app = Monitor (telemeter_fingerprint)

try:
app.app_init ()

if args.interval is not None:
app.set_interval (args.interval)

54 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

app.app_run ()

finally:
app.hgxlink.stop_threadsafe ()

else:
app = Telemeter (interval=)5)

try:
app.app_init ()
app.app_run ()

finally:
app.hgxlink.stop_threadsafe ()

Enter psutil
We’ve got a simple, adjustable-interval timestamp program running between the monitor and the server. Now let’s
make the server actually monitor something. For this, we’ll use psutil, a cross-platform system monitoring library.

First we’re going to make some quick utilities for formatting purposes. These will make our server logs much easier
to read:

def humanize_bibytes(n, prefixes=collections.OrderedDict ((
(0, 'B"),
(1024, 'KiB'),
(1048576, 'MiB'),
(1073741824, 'GiB'"),
(1099511627776, 'TiB'"),
(1125899906842624, 'PiB'"),
(1152921504606846976, 'EiB'),
(1180591620717411303424, 'ziB'"),
(1208925819614629174706176, 'YiB')))):
""" Convert big numbers into easily—human-readable ones.
for value, prefix in reversed(prefixes.items()):
if n >= value:
return '{:.2f} {}'.format (float(n) / value, prefix)

def format_cpu(cpu_list):

cpustr = 'CPU:\n-—————————— \n'
for cpu in cpu_list:
cpustr += ' ' + str(cpu) + '%\n'

return cpustr

def format_mem (mem_tup) :

memstr = 'MEM:\n-————————— \n'

memstr += ' Avail: ' + humanize_bibytes (mem_tup.available) + '\n'
memstr += ' Total: ' + humanize_bibytes (mem_tup.total) + '\n'
memstr += ' Used: ' + str(mem_tup.percent) + '%\n'

return memstr

o
—

“Telemeter” remote monitoring example application 55

Hypergolix Python integration documentation, Release 0.1.0

def format_disk (disk_tup):

diskstr = 'DISK:\n—————————- \n'

diskstr += ' Avail: ' + humanize_bibytes (disk_tup.free) + '\n'
diskstr += ' Total: ' + humanize_bibytes (disk_tup.total) + '\n'
diskstr += ' Used: ' + str(disk_tup.percent) + '%\n'

return diskstr

Great. Now we just need to slightly modify the Telemeter.app_run method to send our system usage instead of
just the timestamp:

def app_run(self):
""" Do the main application loop.
while True:
timestamp = datetime.datetime.now ()

timestr = timestamp.strftime ('$Y.%m.2%d @ %$H:%M:%S\n==========\n")
cpustr = format_cpu(psutil.cpu_percent (interval=.1, percpu=True))
memstr = format_mem(psutil.virtual_memory())

diskstr = format_disk (psutil.disk_usage('/"))
status = (timestr + cpustr + memstr + diskstr + '\n')

self.status.state = status
self.status.push_threadsafe()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds ()
print ('Logged in {:.3f} seconds:\n{}'.format (elapsed, status))
Make sure we clamp this to non-negative values, in case the
update took longer than the current interval.

time.sleep(max (self.interval - elapsed, 0))

All together now...

import argparse
import time

import datetime
import psutil
import collections
import hgx

These are app-specific (here, totally random) API schema identifiers

STATUS_API = hgx.utils.ApiID(
b'\x02\x0b\x16\x19\x00\x19\x10\x18\x08\x12\x03"
b'\x11\x07\x07\r\x0c\n\x14\x04\x13\x07\x04\x06"'
b'\x13\x01\x0c\x04\x00\x0b\x03\x01\x12\x05\x0f"'
b'\x01\x0c\x05\x11\x03\x01\x0e\x13\x16\x13\x11"
b'\x10\x13\t\x06\x10\x00\x14\x0c\x15\x0b\x07"' +
b'\x0c\x0c\x04\x07\x0b\x0£\x18\x03"

+ 4+ o+ o+

)

PAIR_API - hgx.utils.ApiID (
b'\x17\n\x12\x17\x03\x0£\x14\x11\x07\x10\x05\x04"' +
b'\x14\x18\x11\x11\x12\x02\x17\x12\x15\x0e\x04"' +
b'\x0£\x11\x19\x07\x19\n\r\x03\x06\x12\x04\x17"' +
b'\x11\x14\x07\t\x08\x13\x19\x04\n\x0£\x15\x12"' +
b'\x14\x07\x19\x16\x13\x18\x0b\x18\x0e\x12\x15\n"' +
b'\n\x16\x0£\x08\x14"

56 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

INTERVAL_API = hgx.utils.ApiID(

def

def

def

def

b'\n\x10\x04\x00\x13\x11\x0b\x11\x06\x02\x19\x00"' +
b'\x11\x12\x10\x10\n\x14\x19\x15\x11\x18\x0f\x0f"' +
b'\x01\r\x0c\x15\x16\x04\x0£f\x18\x19\x13\x14\x11"' +
b'\x10\x01\x19\x19\x15\x0b\t\x0e\x15\r\x16\x15"' +

b'\x0e\n\x19\x0b\x14\r\n\x04\x0c\x06\x03\x13\x01"' +

b'\x01\x12\x05"

humanize_bibytes (n, prefixes=collections.OrderedDict ((
(0, 'B"),
(1024, 'KiB'"),
(1048576, 'MiB'),
(1073741824, 'GiB'"),
(1099511627776, 'TiB'"),
(1125899906842624, 'PiB'),
(1152921504606846976, 'EiB'),
(1180591620717411303424, 'ziB'"),
(1208925819614629174706176, 'YiB')))):
""" Convert big numbers into easily—human-readable ones.
rrr
for value, prefix in reversed(prefixes.items()) :
if n >= value:
return '{:.2f} {}'.format (float(n) / value, prefix)

format_cpu(cpu_list):
cpustr = 'CPU:\n-—————————— \n'
for cpu in cpu_list:
cpustr += ' ' + str(cpu) + '%\n'

return cpustr

format_mem (mem_tup) :

memstr = 'MEM:\n-————————— \n'

memstr += ' Avail: ' + humanize_bibytes (mem_tup.available) + '\n'
memstr += ' Total: ' + humanize_bibytes (mem_tup.total) + '\n'
memstr += ' Used: ' + str(mem_tup.percent) + '%\n'

return memstr

format_disk (disk_tup) :

diskstr = 'DISK:\n—————————— \n'

diskstr += ' Avail: ' + humanize_bibytes (disk_tup.free) + '\n'
diskstr += ' Total: ' + humanize_bibytes (disk_tup.total) + '\n'
diskstr += ' Used: ' + str(disk_tup.percent) + '%\n'

return diskstr

class Telemeter:

""" Remote monitoring demo app sender.

rrr

def _ init_ (self, interval, minimum_interval=1):
self.hgxlink = hgx.HGXLink ()
self._interval = interval
self.minimum_interval = minimum_interval

“Telemeter” remote monitoring example application

57

Hypergolix Python integration documentation, Release 0.1.0

These are the actual Hypergolix business parts
self.status = None
self.paired_fingerprint = None

def app_init (self):
""" Set up the application.

rro

print ('My fingerprint is: ' + self.hgxlink.whoami.as_stzr())
self.status = self.hgxlink.new_threadsafe

cls = hgx.JsonObj,

state = 'Hello world!",

api_id = STATUS_API

Share handlers are called from within the HGXLink event loop, so they

must be wrapped before use

pair_handler = self.hgxlink.wrap_threadsafe(self.pair_handler)

self.hgxlink.register_share_handler_threadsafe (PAIR_API, pair_handler)

And set up a handler to change our interval

interval_handler = self.hgxlink.wrap_threadsafe(self.interval_handler)

self.hgxlink.register_share_handler_threadsafe (INTERVAL_API,
interval_handler)

def app_run(self):
""" Do the main application loop.
rr
while True:
timestamp = datetime.datetime.now ()

timestr = timestamp.strftime ('%Y.%m.2d @ %$H:%M:%S\n==========\n")
cpustr = format_cpu(psutil.cpu_percent (interval=.1, percpu=True))
memstr = format_mem (psutil.virtual_memory())

diskstr = format_disk (psutil.disk_usage('/"))
status = (timestr + cpustr + memstr + diskstr + '\n')

self.status.state = status
self.status.push_threadsafe ()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds()
print ('Logged in {:.3f} seconds:\n{}'.format (elapsed, status))
Make sure we clamp this to non-negative values, in case the
update took longer than the current interval.

time.sleep(max (self.interval - elapsed, 0))

def pair_handler(self, ghid, origin, api_id):
""" Pair handlers ignore the object itself, instead setting up
the origin as the paired fingerprint (unless one already exists,
in which case it is ignored) and sharing the status object with
them.

This also doubles as a way to re-pair the same fingerprint, 1in
the event that they have gone offline for a long time and are no
longer receiving updates.
P
The initial pairing (pair/trust on first connect)
if self.paired_fingerprint is None:

self.paired_fingerprint = origin

58 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

Subsequent pairing requests from anyone else are ignored
elif self.paired_fingerprint != origin:
return

Now we want to share the status reporter, if we have one, with the
origin
if self.status is not None:

self.status.share_threadsafe (origin)

def interval_handler(self, ghid, origin, api_id):
""" Interval handlers change our recording interval.
rr
Ignore requests that don't match our pairing.
This will also catch un-paired requests.
if origin != self.paired_fingerprint:
return

If the address matches our pairing, use it to change our interval.
else:
We don't need to create an update callback here, because any
upstream modifications will automatically be passed to the
object. This is true of all hypergolix objects, but by using a
proxy, it mimics the behavior of the int itself.
interval_proxy = self.hgxlink.get_threadsafe (
cls = hgx.JsonProxy,
ghid = ghid
)

self._interval = interval_proxy

@property
def interval (self):
'"! This provides some consumer-side protection against
malicious interval proxies.
try:
return float (max(self._interval, self.minimum_interval))

except (ValueError, TypeError):
return self.minimum_interval

class Monitor:

""" Remote monitoring demo app receiver.
rr

def _ _init__ (self, telemeter_fingerprint):
self.hgxlink = hgx.HGXLink ()
self.telemeter_fingerprint = telemeter_fingerprint

These are the actual Hypergolix business parts
self.status = None

self.pair = None

self.interval = None

def app_init (self):
""" Set up the application.

rro

5.1. “Telemeter”’ remote monitoring example application 59

Hypergolix Python integration documentation, Release 0.1.0

def

Because we're using a native coroutine for this share handler, it

needs no wrapping.

self.hgxlink.register_share_handler_threadsafe (STATUS_APT,
self.status_handler)

Wait until after registering the share handler to avoid a race
condition with the Telemeter
self.pair = self.hgxlink.new_threadsafe (
cls = hgx.JsonObj,
state = 'Hello world!"',
api_id = PAIR_API
)

self.pair.share_threadsafe(self.telemeter_fingerprint)

app_run(self):
""" For now, just busy-wait.
while True:

time.sleep(l)

async def status_handler (self, ghid, origin, api_id):

""" We sent the pairing, and the Telemeter shared its status obj
with us in return. Get it, store it locally, and register a
callback to run every time the object 1is updated.
rr
status = await self.hgxlink.get (

cls = hgx.JsonObj,

ghid = ghid
)
This registers the update callback. It will be run in the hgxlink
event loop, so if it were blocking/threaded, we would need to wrap
it like this: self.hgxlink.wrap_ threadsafe (self.update_handler)
status.callback = self.update_handler
We're really only doing this to prevent garbage collection
self.status = status

async def update_handler (self, obj):

def

""" A very simple, ##*asynchronousx*x handler for status updates.
This will be called every time the Telemeter changes their
status.

rro

print (obj.state)

set_interval (self, interval):

""" Set the recording interval remotely.

rr

This is some supply-side protection of the interval.
interval = float (interval)

if self.interval is None:
self.interval = self.hgxlink.new_threadsafe (
cls = hgx.JsonProxy,
state = interval,
api_id = INTERVAL_API
)
self.interval.hgx_share_threadsafe(self.telemeter_ fingerprint)
else:
We can't directly reassign the proxy here, because it would just

60

Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

overwrite the self.interval name with the interval float from
above. Instead, we need to assign to the state.
self.interval.hgx_state = interval
self.interval.hgx_push_threadsafe ()

if _name_ == "_ _main__ ":
argparser = argparse.ArgumentParser (
description = 'A simple remote telemetry app.'
)
argparser.add_argument (
'-—telereader',

action = 'store',
default = None,
help = 'Pass a Telemeter fingerprint to run as a reader.'

)
argparser.add_argument (
'-—interval',
action = 'store',
default = None,
type = float,
help = 'Set the Telemeter recording interval from the Telereader. ' +
'Ignored by a Telemeter.'
)
args = argparser.parse_args()

if args.telereader is not None:
telemeter_fingerprint = hgx.Ghid.from_str(args.telereader)
app = Monitor (telemeter_fingerprint)

try:
app.app_init ()

if args.interval is not None:
app.set_interval (args.interval)

app.app_run()

finally:
app.hgxlink.stop_threadsafe ()

else:
app = Telemeter (interval=5)

try:
app.app_init ()
app.app_run ()

finally:
app.hgxlink.stop_threadsafe ()

One last thing: daemonizing

Our simple server monitoring app works pretty well, but there’s still one problem left: the telemeter cannot run on its
own. If we, for example, run it in the background using python telemeter.py &, it will shut down as soon as
our shell exits (in other words, if we’re working via SSH, as soon as our session disconnects). To keep it running, we

5.1. “Telemeter”’ remote monitoring example application 61

Hypergolix Python integration documentation, Release 0.1.0

need to properly daemonize the script.

A full discussion of daemonization is out-of-scope for Hypergolix, but if you want to learn more, check out the
Daemoniker documentation. Regardless, the following changes will keep our script running in the background until
we explicitly stop it:

import argparse
import time

import datetime
import psutil
import collections
import daemoniker
import hgx

These are app-specific (here, totally random) API schema identifiers

STATUS_API = hgx.utils.ApiID (
b'\x02\x0b\x16\x19\x00\x19\x10\x18\x08\x12\x03"
b'\x11\x07\x07\r\x0c\n\x14\x04\x13\x07\x04\x06"'
b'\x13\x01\x0c\x04\x00\x0b\x03\x01\x12\x05\x0£"
b'\x01\x0c\x05\x11\x03\x01\x0e\x13\x16\x13\x11"'
b'\x10\x13\t\x06\x10\x00\x14\x0c\x15\x0b\x07"' +
b'\x0c\x0c\x04\x07\x0b\x0£\x18\x03"'

+ o+ o+ +

)

PAIR_API - hgx.utils.ApiID (
b'\x17\n\x12\x17\x03\x0£f\x14\x11\x07\x10\x05\x04"' +
b'\x14\x18\x11\x11\x12\x02\x17\x12\x15\x0e\x04"' +
b'\x0£f\x11\x19\x07\x19\n\r\x03\x06\x12\x04\x17"' +
b'\x11\x14\x07\t\x08\x13\x19\x04\n\x0£f\x15\x12"' +
b'\x14\x07\x19\x16\x13\x18\x0b\x18\x0e\x12\x15\n' +
b'\n\x16\x0£\x08\x14"'

)

INTERVAL_API = hgx.utils.ApiID(
b'\n\x10\x04\x00\x13\x11\x0b\x11\x06\x02\x19\x00"' +
b'\x11\x12\x10\x10\n\x14\x19\x15\x11\x18\x0£\x0£f"'
b'\x01\r\x0c\x15\x16\x04\x0f\x18\x19\x13\x14\x11"' +
b'\x10\x01\x19\x19\x15\x0b\t\x0e\x15\r\x16\x15"' +
b'\x0e\n\x19\x0b\x14\r\n\x04\x0c\x06\x03\x13\x01"' +
b'\x01\x12\x05"

+

def humanize_bibytes (n, prefixes=collections.OrderedDict ((

(0, 'B"),
(1024, 'KiB'"),
(1048576, 'MiB'"),
(1073741824, 'GiB'),
(1099511627776, 'TiB'"),
(1125899906842624, 'PiB'"),
(1152921504606846976, 'EiB'),
(1180591620717411303424, 'ziB'"),
(1208925819614629174706176, 'YiB')))):

""" Convert big numbers into easily-human-readable ones.

rrr

for value, prefix in reversed(prefixes.items()):

if n >= value:
return '{:.2f} {}'.format (float(n) / value, prefix)

62 Chapter 5. Example Hypergolix applications and tutorials

http://daemoniker.readthedocs.io/en/latest/

Hypergolix Python integration documentation, Release 0.1.0

def format_cpu(cpu_list):

cpustr = 'CPU:\n-—————————~ \n'
for cpu in cpu_list:
cpustr += ' ' + str(cpu) + '3\n'

return cpustr

def format_mem (mem_tup) :

memstr = 'MEM:\n------—-—- \n'

memstr += ' Avail: ' + humanize_bibytes (mem_tup.available) + '\n'
memstr += ' Total: ' + humanize_bibytes (mem_tup.total) + '\n'
memstr += ' Used: ' + str(mem_tup.percent) + '%\n'

return memstr

def format_disk (disk_tup):

diskstr = 'DISK:\n—————————— \n'

diskstr += ' Avail: ' + humanize_bibytes (disk_tup.free) + '\n'
diskstr += ' Total: ' + humanize_bibytes (disk_tup.total) + '\n'
diskstr += ' Used: ' + str(disk_tup.percent) + '$\n'

return diskstr

class Telemeter:
""" Remote monitoring demo app sender.

rrr

def _ init_ (self, interval, minimum_interval=1):
self.hgxlink = hgx.HGXLink ()
self._interval = interval
self.minimum_interval = minimum_interval

These are the actual Hypergolix business parts
self.status = None
self.paired_fingerprint = None

self.running = True

def app_init (self):
""" Set up the application.

rro

print ('My fingerprint is: ' + self.hgxlink.whoami.as_str())
self.status = self.hgxlink.new_threadsafe(

cls = hgx.JsonObj,

state = 'Hello world!"',

api_id = STATUS_API

Share handlers are called from within the HGXLink event loop, so they

must be wrapped before use

pair_handler = self.hgxlink.wrap_threadsafe(self.pair_handler)

self.hgxlink.register_share_handler_threadsafe (PAIR_API, pair_handler)

And set up a handler to change our interval

interval_handler = self.hgxlink.wrap_threadsafe(self.interval_handler)

self.hgxlink.register_share_handler_threadsafe (INTERVAL_API,
interval_handler)

def app_run(self):

5.1. “Telemeter”’ remote monitoring example application

63

Hypergolix Python integration documentation, Release 0.1.0

def

def

def

""" Do the main application loop.

rro

while self.running:
timestamp = datetime.datetime.now ()

timestr = timestamp.strftime ('%Y.%m.2d Q@ %H:%M:%S\n==========\n")
cpustr = format_cpu(psutil.cpu_percent (interval=.1, percpu=True))
memstr = format_mem(psutil.virtual_memory ())

diskstr = format_disk (psutil.disk_usage('/"'))
status = (timestr + cpustr + memstr + diskstr + '\n')

self.status.state = status
self.status.push_threadsafe ()

elapsed = (datetime.datetime.now() - timestamp) .total_seconds()
print ('Logged in {:.3f} seconds:\n{}'.format (elapsed, status))
Make sure we clamp this to non-negative values, 1in case the

update took longer than the current interval.
time.sleep(max(self.interval - elapsed, 0))

signal_handler (self, signum) :
self.running = False
self.hgxlink.stop_threadsafe ()

pair_handler (self, ghid, origin, api_id):

""" Pair handlers ignore the object itself, instead setting up
the origin as the paired_fingerprint (unless one already exists,
in which case it is ignored) and sharing the status object with
them.

This also doubles as a way to re-pair the same fingerprint, 1in
the event that they have gone offline for a long time and are no
longer receiving updates.
rr
The initial pairing (pair/trust on first connect)
if self.paired_fingerprint is None:

self.paired_fingerprint = origin

Subsequent pairing requests from anyone else are ignored
elif self.paired_fingerprint != origin:
return

Now we want to share the status reporter, if we have one, with the
origin
if self.status is not None:

self.status.share_threadsafe (origin)

interval_handler (self, ghid, origin, api_id):
''" Interval handlers change our recording interval.
Ignore requests that don't match our pairing.
This will also catch un-paired requests.
if origin != self.paired_fingerprint:
return

If the address matches our pairing, use it to change our interval.
else:

We don't need to create an update callback here, because any

64

Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

upstream modifications will automatically be passed to the
object. This is true of all hypergolix objects, but by using a
proxy, it mimics the behavior of the int itself.
interval_proxy = self.hgxlink.get_threadsafe (

cls = hgx.JsonProxy,

ghid = ghid
)

self._interval = interval_proxy

@property
def interval (self):
""" This provides some consumer—-side protection against
malicious interval proxies.
P
try:
return float (max(self._interval, self.minimum_interval))

except (ValueError, TypeError):
return self.minimum_interval

class Monitor:

""" Remote monitoring demo app receiver.
rr

def _ _init__ (self, telemeter_fingerprint):
self.hgxlink = hgx.HGXLink ()
self.telemeter_fingerprint = telemeter_fingerprint

These are the actual Hypergolix business parts
self.status = None

self.pair = None

self.interval = None

def app_init (self):
""" Set up the application.
oy
Because we're using a native coroutine for this share handler, it
needs no wrapping.
self.hgxlink.register_share_handler_threadsafe (STATUS_API,
self.status_handler)

Wait until after registering the share handler to avoid a race
condition with the Telemeter
self.pair = self.hgxlink.new_threadsafe (
cls = hgx.JsonObj,
state = 'Hello world!"',
api_id = PAIR_API
)

self.pair.share_threadsafe(self.telemeter_fingerprint)

def app_run(self):
""" For now, just busy-wait.
rr
while True:
time.sleep (1)

async def status_handler (self, ghid, origin, api_id):

5.1. “Telemeter”’ remote monitoring example application

65

Hypergolix Python integration documentation, Release 0.1.0

""" We sent the pairing, and the Telemeter shared its status obj
with us in return. Get it, store it locally, and register a
callback to run every time the object 1is updated.
rr
print ('Incoming status: ' + ghid.as_str())
status = await self.hgxlink.get (

cls = hgx.JsonObj,

ghid = ghid
)
This registers the update callback. It will be run in the hgxlink
event loop, so 1if it were blocking/threaded, we would need to wrap
it like this: self.hgxlink.wrap_threadsafe (self.update_handler)
status.callback = self.update_handler
We're really only doing this to prevent garbage collection
self.status = status

async def update_handler (self, obj):
"' A very simple, xxasynchronousx*x* handler for status updates.
This will be called every time the Telemeter changes their
status.

rro

print (obj.state)

def set_interval (self, interval):
""" Set the recording interval remotely.
This is some supply-side protection of the interval.
interval = float (interval)

if self.interval is None:
self.interval = self.hgxlink.new_threadsafe (
cls = hgx.JsonProxy,
state = interval,
api_id = INTERVAL_APT
)
self.interval.hgx_share_threadsafe(self.telemeter_fingerprint)
else:
We can't directly reassign the proxy here, because it would just
overwrite the self.interval name with the interval float from
above. Instead, we need to assign to the state.
self.interval.hgx_state = interval
self.interval.hgx_push_threadsafe ()

if _name_ == "_ _main__ ":
argparser = argparse.ArgumentParser (
description = 'A simple remote telemetry app.'

)
argparser.add_argument (
'-—telereader',

action = 'store',
default = None,
help = 'Pass a Telemeter fingerprint to run as a reader.'

)

argparser.add_argument (
'-—interval',
action = 'store',
default = None,

66 Chapter 5. Example Hypergolix applications and tutorials

Hypergolix Python integration documentation, Release 0.1.0

type = float,
help 'Set the Telemeter recording interval from the Telereader. ' +
'Ignored by a Telemeter.'

)
argparser.add_argument (

'—-—pidfile’,

action = 'store',

default = 'telemeter.pid',

type = str,

help = 'Set the name for the PID file for the Telemeter daemon.'
)
argparser.add_argument (

'--stop',

action = 'store_true',

help = 'Stop an existing Telemeter daemon.'
)

args = argparser.parse_args ()

This is the READER

if args.telereader is not None:
telemeter_fingerprint = hgx.Ghid.from_str(args.telereader)
app = Monitor (telemeter_fingerprint)

try:
app.app_init ()

if args.interval is not None:
app.set_interval (args.interval)

app.app_run ()

finally:
app.-hgxlink.stop_threadsafe ()

This is the SENDER, but we're stopping it.
elif args.stop:
daemoniker.send(args.pidfile, daemoniker.SIGTERM)

This 1is the SENDER, and we're starting it.
else:
We need to actually daemonize the app so that it persists without
an SSH connection
with daemoniker.Daemonizer () as (is_setup, daemonizer):
is_parent, pidfile = daemonizer (
args.pidfile,
args.pidfile,
strip_cmd_args = False

Parent exits here

Just the child from here
app = Telemeter (interval=))

try:
sighandler = daemoniker.SignalHandlerl (
pidfile,
sigint = app.signal_handler,

5.1. “Telemeter”’ remote monitoring example application 67

Hypergolix Python integration documentation, Release 0.1.0

sigterm = app.signal_handler,
sigabrt = app.signal_handler

)
sighandler.start ()

app.app_init ()
app.app_run()

finally:
app.hgxlink.stop_threadsafe ()

68 Chapter 5. Example Hypergolix applications and tutorials

Index

Symbols

__bytes__() (Ghid method), 18
__eq__() (Ghid method), 18
__eq__() (Obj method), 28
__eq__() (Proxy method), 34
__str__() (Ghid method), 18

A

address (Ghid attribute), 18
algo (Ghid attribute), 18
api_id (Obj attribute), 27
as_str() (Ghid method), 19

B

binder (Obj attribute), 27

C

callback (Obj attribute), 28

D

delete() (Obj method), 32

delete_loopsafe() (Obj method), 32

delete_threadsafe() (Obj method), 32
deregister_startup() (HGXLink method), 24
deregister_startup_loopsafe() (HGXLink method), 24
deregister_startup_threadsafe() (HGXLink method), 24
discard() (Obj method), 32

discard_loopsafe() (Obj method), 32
discard_threadsafe() (Obj method), 32

dynamic (Obj attribute), 27

F

freeze() (Obj method), 31
freeze_loopsafe() (Obj method), 31
freeze_threadsafe() (Obj method), 31
from_bytes() (Ghid class method), 18
from_str() (Ghid class method), 19

G

get() (HGXLink method), 23
get_loopsafe() (HGXLink method), 23
get_threadsafe() (HGXLink method), 23
Ghid (built-in class), 17

ghid (Obj attribute), 27

H

HGXLink (built-in class), 20
hold() (Obj method), 31
hold_loopsafe() (Obj method), 31
hold_threadsafe() (Obj method), 31

J

JsonObj (built-in class), 35
JsonProxy (built-in class), 35

N

new() (HGXLink method), 22
new_loopsafe() (HGXLink method), 22
new_threadsafe() (HGXLink method), 22

O

Obj (built-in class), 25

P

PickleObj (built-in class), 36
PickleProxy (built-in class), 36

private (Obj attribute), 27

Proxy (built-in class), 32
pseudorandom() (Ghid class method), 19
push() (Obj method), 30
push_loopsafe() (Obj method), 30
push_threadsafe() (Obj method), 30

R

recast() (Obj method), 29
recast_loopsafe() (Obj method), 29
recast_threadsafe() (Obj method), 29

69

Hypergolix Python integration documentation, Release 0.1.0

register_share_handler() (HGXLink method), 24

register_share_handler_loopsafe() (HGXLink method),
24

register_share_handler_threadsafe() (HGXLink method),
24

register_startup() (HGXLink method), 24

register_startup_loopsafe() (HGXLink method), 24

register_startup_threadsafe() (HGXLink method), 24

register_token() (HGXLink method), 23

register_token_loopsafe() (HGXLink method), 23

register_token_threadsafe() (HGXLink method), 23

S

share() (Obj method), 30
share_loopsafe() (Obj method), 30
share_threadsafe() (Obj method), 30
start() (HGXLink method), 21

state (Obj attribute), 26

stop() (HGXLink method), 22
stop_loopsafe() (HGXLink method), 22
stop_threadsafe() (HGXLink method), 22
sync() (Obj method), 30
sync_loopsafe() (Obj method), 30
sync_threadsafe() (Obj method), 30

T

token (HGXLink attribute), 20

W

whoami (HGXLink attribute), 20
wrap_loopsafe() (HGXLink method), 21
wrap_threadsafe() (HGXLink method), 21

70

Index

	Quickstart
	Linux & OSX
	Windows

	Features
	Network-agnostic
	Client-side encryption and authentication
	Explicit data expiration
	Open source
	Simple to integrate

	Installing and starting Hypergolix
	Hypergolix installation
	Running Hypergolix

	API reference
	Hypergolix addresses: Ghid
	Hypergolix IPC: the HGXLink
	Basic bytes interface
	Serialized Python objects

	Example Hypergolix applications and tutorials
	``Telemeter'' remote monitoring example application

